首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In this paper, two different kinds of (N, T)‐policies for an M/M/m queueing system are studied. The system operates only intermittently and is shut down when no customers are present any more. A fixed setup cost of K > 0 is incurred each time the system is reopened. Also, a holding cost of h > 0 per unit time is incurred for each customer present. The two (N, T)‐policies studied for this queueing system with cost structures are as follows: (1) The system is reactivated as soon as N customers are present or the waiting time of the leading customer reaches a predefined time T, and (2) the system is reactivated as soon as N customers are present or the time units after the end of the last busy period reaches a predefined time T. The equations satisfied by the optimal policy (N*, T*) for minimizing the long‐run average cost per unit time in both cases are obtained. Particularly, we obtain the explicit optimal joint policy (N*, T*) and optimal objective value for the case of a single server, the explicit optimal policy N* and optimal objective value for the case of multiple servers when only predefined customers number N is measured, and the explicit optimal policy T* and optimal objective value for the case of multiple servers when only predefined time units T is measured, respectively. These results partly extend (1) the classic N or T policy to a more practical (N, T)‐policy and (2) the conclusions obtained for single server system to a system consisting of m (m ≥ 1) servers. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 240–258, 2000  相似文献   

2.
We consider a processing network in which jobs arrive at a fork‐node according to a renewal process. Each job requires the completion of m tasks, which are instantaneously assigned by the fork‐node to m task‐processing nodes that operate like G/M/1 queueing stations. The job is completed when all of its m tasks are finished. The sojourn time (or response time) of a job in this G/M/1 fork‐join network is the total time it takes to complete the m tasks. Our main result is a closed‐form approximation of the sojourn‐time distribution of a job that arrives in equilibrium. This is obtained by the use of bounds, properties of D/M/1 and M/M/1 fork‐join networks, and exploratory simulations. Statistical tests show that our approximation distributions are good fits for the sojourn‐time distributions obtained from simulations. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

3.
Suppose that the state of a queueing system is described by a Markov process { Yt, t ≥ 0}, and the profit from operating it up to a time t is given by the function f(Yt). We operate the system up to a time T, where the random variable T is a stopping time for the process Yt. Optimal stochastic control is achieved by choosing the stopping time T that maximizes Ef(YT) over a given class of stopping times. In this paper a theory of stochastic control is developed for a single server queue with Poisson arrivals and general service times.  相似文献   

4.
We consider a single-machine problem of scheduling n independent jobs to minimize makespan, in which the processing time of job Jj grows by wj with each time unit its start is delayed beyond a given common critical date d. This processing time is pj if Jj starts by d. We show that this problem is NP-hard, give a pseudopolynomial algorithm that runs in time and O(nd) space, and develop a branch-and-bound algorithm that solves instances with up to 100 jobs in a reasonable amount of time. We also introduce the case of bounded deterioration, where the processing time of a job grows no further if the job starts after a common maximum deterioration date D > d. For this case, we give two pseudopolynomial time algorithms: one runs in O(n2d(D − d) time and O(nd(D − d)) space, the other runs in pj)2) time and pj) space. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 511–523, 1998  相似文献   

5.
Queueing systems which include the possibility for a customer to return to the same server for additional service are called queueing systems with feedback. Such systems occur in computer networks for example. In these systems a chosen customer will wait in the queue, be serviced and then, with probability p, return to wait again, be serviced again and continue this process until, with probability (1 – p) = q, it departs the system never to return. The time of waiting plus service time, the nth time the customer goes through, we will call his nth sojourn time. The (random) sum of these sojourn times we will call the total sojourn time (abbreviated, sojourn time when there is no confusion which sojourn time we are talking about). In this paper we study the total sojourn time in a queueing system with feedback. We give the details for M/G/1 queues in which the decision to feedback or not is a Bernoulli process. While the details of the computations can be more difficult, the structure of the sojourn time process is unchanged for the M/G/1 queue with a more general decision process as will be shown. We assume the reader is familiar with Disney, McNickle and Simon [1].  相似文献   

6.
We consider a model with M + N identical machines. As many as N of these can be working at any given time and the others act as standby spares. Working machines fail at exponential rate λ, spares fail at exponential rale γ, and failed machines are repaired at exponential rate μ. The control variables are λ. μ, and the number of removable repairman, S, to be operated at any given time. Using the criterion of total expected discounted cost, we show that λ, S, and μ are monotonic functions of the number of failed machines M, N, the discount factor, and for the finite time horizon model, the amount of time remaining.  相似文献   

7.
In this paper, we present an O(nm log(U/n)) time maximum flow algorithm. If U = O(n) then this algorithm runs in O(nm) time for all values of m and n. This gives the best available running time to solve maximum flow problems satisfying U = O(n). Furthermore, for unit capacity networks the algorithm runs in O(n2/3m) time. It is a two‐phase capacity scaling algorithm that is easy to implement and does not use complex data structures. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 511–520, 2000  相似文献   

8.
An alternating renewal process starts at time zero and visits states 1,2,…,r, 1,2, …,r 1,2, …,r, … in sucession. The time spent in state i during any cycle has cumulative distribution function Fi, and the sojourn times in each state are mutually independent, positive and nondegenerate random variables. In the fixed time interval [0,T], let Ui(T) denote the total amount of time spent in state i. In this note, a central limit theorem is proved for the random vector (Ui(T), 1 ≤ ir) (properly normed and centered) as T → ∞.  相似文献   

9.
We study the scheduling situation in which a set of jobs subjected to release dates and deadlines are to be performed on a single machine. The objective is to minimize a piecewise linear objective function ∑jFj where Fj(Cj) corresponds to the cost of the completion of job j at time Cj. This class of function is very large and thus interesting both from a theoretical and practical point of view: It can be used to model total (weighted) completion time, total (weighted) tardiness, earliness and tardiness, etc. We introduce a new Mixed Integer Program (MIP) based on time interval decomposition. Our MIP is closely related to the well‐known time‐indexed MIP formulation but uses much less variables and constraints. Experiments on academic benchmarks as well as on real‐life industrial problems show that our generic MIP formulation is efficient. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

10.
We consider the problem of scheduling a set of n jobs on a single batch machine, where several jobs can be processed simultaneously. Each job j has a processing time pj and a size sj. All jobs are available for processing at time 0. The batch machine has a capacity D. Several jobs can be batched together and processed simultaneously, provided that the total size of the jobs in the batch does not exceed D. The processing time of a batch is the largest processing time among all jobs in the batch. There is a single vehicle available for delivery of the finished products to the customer, and the vehicle has capacity K. We assume that K = rD, where and r is an integer. The travel time of the vehicle is T; that is, T is the time from the manufacturer to the customer. Our goal is to find a schedule of the jobs and a delivery plan so that the service span is minimized, where the service span is the time that the last job is delivered to the customer. We show that if the jobs have identical sizes, then we can find a schedule and delivery plan in time such that the service span is minimum. If the jobs have identical processing times, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most 11/9 times the optimal service span. When the jobs have arbitrary processing times and arbitrary sizes, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most twice the optimal service span. We also derive upper bounds of the absolute worst‐case ratios in both cases. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 470–482, 2015  相似文献   

11.
We consider the scheduling of n tasks on a single resource. Each task becomes available for processing at time ai, must be completed by time bi, and requires di time units for processing. The aim is to find a schedule that minimizes the elapsed time to complete all jobs. We present solution algorithms for this problem when job splitting is permitted and when job splitting is not permitted. Then we consider several scheduling situations which arise in practice where these models may apply.  相似文献   

12.
We present a service constrained (Q, r) model that minimizes expected holding and ordering costs subject to an upper bound on the expected waiting time of demands that are actually backordered. We show that, after optimizing over r, the average cost is quasiconvex in Q for logconcave continuous lead time demand distributions. For logconcave discrete lead time demand distributions we find a single‐pass efficient algorithm based on a novel search stopping criterion. The algorithm also allows for bounds on the variability of the service measure. A brief numerical study indicates how the bounds on service impact the optimal average cost and the optimal (Q, r) choice. The discrete case algorithm can be readily adapted to provide a single pass algorithm for the traditional model that bounds the expected waiting time of all demands (backordered or not). © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 557–573, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10028  相似文献   

13.
Consider a system consisting of n separately maintained independent components where the components alternate between intervals in which they are “up” and in which they are “down”. When the ith component goes up [down] then, independent of the past, it remains up [down] for a random length of time, having distribution Fi[Gi], and then goes down [up]. We say that component i is failed at time t if it has been “down” at all time points s ?[t-A.t]: otherwise it is said to be working. Thus, a component is failed if it is down and has been down for the previous A time units. Assuming that all components initially start “up,” let T denote the first time they are all failed, at which point we say the system is failed. We obtain the moment-generating function of T when n = l, for general F and G, thus generalizing previous results which assumed that at least one of these distributions be exponential. In addition, we present a condition under which T is an NBU (new better than used) random variable. Finally we assume that all the up and down distributions Fi and Gi i = l,….n, are exponential, and we obtain an exact expression for E(T) for general n; in addition we obtain bounds for all higher moments of T by showing that T is NBU.  相似文献   

14.
In this article a multistate system under some checking policy is considered. The system has n + 1 states: 0,1, …,n, and deteriorates gradually. State 0 is a normal (full capacity) state and states 1, …,n are considered unsatisfactory. Transition from state 0 to state 1 is considered a system failure. This failure can be detected only through checking, which entails a fixed cost c. The holding time in the undiscovered state i (i = 1, …,n) results in cost di per unit of time. For such a system, the algorithm of determining optimum checking times is given.  相似文献   

15.
We consider the problem of finding the Kth shortest path for a time‐schedule network, where each node in the network has a list of prespecified departure times, and departure from the node can take place only at one of these departure times. We develop a polynomial time algorithm independent of K for finding the Kth shortest path. The proposed algorithm constructs a map structure at each node in the network, using which we can directly find the Kth shortest path without having to enumerate the first K − 1 paths. Since the same map structure is used for different K values, it is not necessary to reconstruct the table for additional paths. Consequently, the algorithm is suitable for directly finding multiple shortest paths in the same network. Furthermore, the algorithm is modified slightly for enumerating the first K shortest paths and is shown to have the lowest possible time complexity under a condition that holds for most practical networks. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

16.
Extending Sastry's result on the uncapacitated two‐commodity network design problem, we completely characterize the optimal solution of the uncapacitated K‐commodity network design problem with zero flow costs for the case when K = 3. By solving a set of shortest‐path problems on related graphs, we show that the optimal solutions can be found in O(n3) time when K = 3, where n is the number of nodes in the network. The algorithm depends on identifying a list of “basic patterns”; the number of basic patterns grows exponentially with K. We also show that the uncapacitated K‐commodity network design problem can be solved in O(n3) time for general K if K is fixed; otherwise, the time for solving the problem is exponential. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

17.
In this paper we consider n jobs and a number of machines in parallel. The machines are identical and subject to breakdown and repair. The number may therefore vary over time and is at time t equal to m(t). Preemptions are allowed. We consider three objectives, namely, the total completion time, ∑ Cj, the makespan Cmax, and the maximum lateness Lmax. We study the conditions on m(t) under which various rules minimize the objective functions under consideration. We analyze cases when the jobs have deadlines to meet and when the jobs are subject to precedence constraints. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

18.
We consider the scheduling of n jobs on m identical machines when the jobs become available for processing at ready times ai, ai, ? 0, require di time units for processing and must be completed by times bi for i = 1, 2, … n. The objective chosen is that of minimizing the total elapsed time to complete all jobs subject to the ready time and due date constraints, preemption is not allowed. We present a multi-stage solution algorithm for this problem that is based on an implicit enumeration procedure and also uses the labelling type algorithm which solves the problem when preemption is allowed.  相似文献   

19.
In an accumulation game, a HIDER attempts to accumulate a certain number of objects or a certain quantity of material before a certain time, and a SEEKER attempts to prevent this. In a continuous accumulation game the HIDER can pile material either at locations $1, 2, …, n, or over a region in space. The HIDER will win (payoff 1) it if accumulates N units of material before a given time, and the goal of the SEEKER will win (payoff 0) otherwise. We assume the HIDER can place continuous material such as fuel at discrete locations i = 1, 2, …, n, and the game is played in discrete time. At each time k > 0 the HIDER acquires h units of material and can distribute it among all of the locations. At the same time, k, the SEEKER can search a certain number s < n of the locations, and will confiscate (or destroy) all material found. After explicitly describing what we mean by a continuous accumulation game on discrete locations, we prove a theorem that gives a condition under which the HIDER can always win by using a uniform distribution at each stage of the game. When this condition does not hold, special cases and examples show that the resulting game becomes complicated even when played only for a single stage. We reduce the single stage game to an optimization problem, and also obtain some partial results on its solution. We also consider accumulation games where the locations are arranged in either a circle or in a line segment and the SEEKER must search a series of adjacent locations. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 60–77, 2002; DOI 10.1002/nav.1048  相似文献   

20.
The nonlinear difference equation for the distribution of the busy period for an unbounded discrete time queue of M|G| 1 type is solved numerically by a monotone iterative procedure. A starting solution is found by computing a first passage time distribution in a truncated version of the queue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号