首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a ship scheduling problem concerned with the pickup and delivery of bulk cargoes within given time windows. As the ports are closed for service at night and during weekends, the wide time windows can be regarded as multiple time windows. Another issue is that the loading/discharging times of cargoes may take several days. This means that a ship will stay idle much of the time in port, and the total time at port will depend on the ship's arrival time. Ship scheduling is associated with uncertainty due to bad weather at sea and unpredictable service times in ports. Our objective is to make robust schedules that are less likely to result in ships staying idle in ports during the weekend, and impose penalty costs for arrivals at risky times (i.e., close to weekends). A set partitioning approach is proposed to solve the problem. The columns correspond to feasible ship schedules that are found a priori. They are generated taking the uncertainty and multiple time windows into account. The computational results show that we can increase the robustness of the schedules at the sacrifice of increased transportation costs. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 611–625, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10033  相似文献   

2.
A major challenge in making supply meet demand is to coordinate transshipments across the supply chain to reduce costs and increase service levels in the face of demand fluctuations, short lead times, warehouse limitations, and transportation and inventory costs. In particular, transshipment through crossdocks, where just‐in‐time objectives prevail, requires precise scheduling between suppliers, crossdocks, and customers. In this work, we study the transshipment problem with supplier and customer time windows where flow is constrained by transportation schedules and warehouse capacities. Transportation is provided by fixed or flexible schedules and lot‐sizing is dealt with through multiple shipments. We develop polynomial‐time algorithms or, otherwise, provide the complexity of the problems studied. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

3.
The extended economic lot scheduling problem (EELSP) is concerned with scheduling the production of a set of items in a single facility to minimize the long-run average holding, backlogging, and setup costs. Given an efficient cyclic production schedule for the EELSP, called the target schedule, we consider the problem of how to schedule production after a single schedule disruption. We propose a base stock policy, characterized by a base stock vector, that prescribes producing an item until its inventory level reaches the peak inventory of the target schedule corresponding to the item's position in the production sequence. We show that the base stock policy is always successful in recovering the target schedule. Moreover, the base stock policy recovers the target schedule at minimal excess over average cost whenever the backorder costs are proportional to the processing times. This condition holds, for example, when the value of the items is proportional to their processing times, and a common inventory carrying cost and a common service level is used for all the items. Alternatively, the proportionality condition holds if the inventory manager is willing to select the service levels from a certain set that is large enough to guarantee any minimal level of service, and then uses the imputed values for the backorder costs. When the proportionality condition holds we provide a closed-form expression for the total relevant excess over average cost of recovering the target schedule. We assess the performance of the base stock policy when the proportionality condition does not hold through a numerical study, and suggest some heuristic uses of the base stock policy. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
This paper deals with the sequencing problem of minimizing linear delay costs with parallel identical processors. The theoretical properties of this m-machine problem are explored, and the problem of determining an optimum scheduling procedure is examined. Properties of the optimum schedule are given as well as the corresponding reductions in the number of schedules that must be evaluated in the search for an optimum. An experimental comparison of scheduling rules is reported; this indicates that although a class of effective heuristics can be identified, their relative behavior is difficult to characterize.  相似文献   

5.
We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding), and intermediate (work‐in‐process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two different, but closely related, Dantzig‐Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig‐Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two different lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near‐optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with different types of strongly ????‐hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near‐optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

6.
We study the one-warehouse multi-retailer problem under deterministic dynamic demand and concave batch order costs, where order batches have an identical capacity and the order cost function for each facility is concave within the batch. Under appropriate assumptions on holding cost structure, we obtain lower bounds via a decomposition that splits the two-echelon problem into single-facility subproblems, then propose approximation algorithms by judiciously recombining the subproblem solutions. For piecewise linear concave batch order costs with a constant number of slopes we obtain a constant-factor approximation, while for general concave batch costs we propose an approximation within a logarithmic factor of optimality. We also extend some results to subadditive order and/or holding costs.  相似文献   

7.
Without restricting the class of permissible schedules, we derive optimal schedules for economic lot scheduling problems that are fully loaded, have external setups, and have only two products. The fully loaded condition accurately represents certain types of bottlenecks. We show that the optimal schedule must have the Wagner-Whitin property. We also develop a measure of aggregate inventory, derive an optimal steady-state aggregate inventory policy, and provide conditions under which the aggregate inventory level of an optimal schedule must approach a steady state. By restricting the class of permissible schedules to rotation cycle schedules, we extend these results to more than two products.  相似文献   

8.
If the processing time of each job in a flow shop also depends on the time spent prior to processing, then the choice of a sequence influences processing times. This nonstandard scheduling problem is studied here for the minimum makespan schedule in a flow shop with two machines. The problem is NP-hard in the strong sense and already contains the main features of the general case [10]. Restricting to the case of permutation schedules, we first determine the optimal release times of the jobs for a given sequence. Permutation schedules are evaluated for this optimal policy, and the scheduling problem is solved using branch-and-bound techniques. We also show the surprising result that the optimal schedule may not be a permutation schedule. Numerical results on randomly generated data are provided for permutation schedules. Our numerical results confirm our preliminary study [10] that fairly good approximate solutions can efficiently be obtained in the case of limited computing time using the heuristics due to Gilmore and Gomory [7]. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
In the classical EPQ model with continuous and constant demand, holding and setup costs are minimized when the production rate is no larger than the demand rate. However, the situation may change when demand is lumpy. We consider a firm that produces multiple products, each having a unique lumpy demand pattern. The decision involves determining both the lot size for each product and the allocation of resources for production rate improvements among the products. We find that each product's optimal production policy will take on only one of two forms: either continuous production or lot‐for‐lot production. The problem is then formulated as a nonlinear nonsmooth knapsack problem among products determined to be candidates for resource allocation. A heuristic procedure is developed to determine allocation amounts. The procedure decomposes the problem into a mixed integer program and a nonlinear convex resource allocation problem. Numerical tests suggest that the heuristic performs very well on average compared to the optimal solution. Both the model and the heuristic procedure can be extended to allow the company to simultaneously alter both the production rates and the incoming demand lot sizes through quantity discounts. Extensions can also be made to address the case where a single investment increases the production rate of multiple products. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

10.
We study a problem of scheduling a maintenance activity on parallel identical machines, under the assumption that all the machines must be maintained simultaneously. One example for this setting is a situation where the entire system must be stopped for maintenance because of a required electricity shut‐down. The objective is minimum flow‐time. The problem is shown to be NP‐hard, and moreover impossible to approximate unless P = NP. We introduce a pseudo‐polynomial dynamic programming algorithm, and show how to convert it into a bicriteria FPTAS for this problem. We also present an efficient heuristic and a lower bound. Our numerical tests indicate that the heuristic provides in most cases very close‐to‐optimal schedules. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

11.
In this article, we seek to understand how a capacity‐constrained seller optimally prices and schedules product shipping to customers who are heterogeneous on willingness to pay (WTP) and willingness to wait (WTW). The capacity‐constrained seller does not observe each customer's WTP and WTW and knows only the aggregate distributions of WTP and WTW. The seller's problem is modeled as an M/M/Ns queueing model with multiclass customers and multidimensional information screening. We contribute to the literature by providing an optimal and efficient algorithm. Furthermore, we numerically find that customers with a larger waiting cost enjoys a higher scheduling priority, but customers with higher valuation do not necessarily get a higher scheduling priority. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 215–227, 2015  相似文献   

12.
In this article, we study a biobjective economic lot‐sizing problem with applications, among others, in green logistics. The first objective aims to minimize the total lot‐sizing costs including production and inventory holding costs, whereas the second one minimizes the maximum production and inventory block expenditure. We derive (almost) tight complexity results for the Pareto efficient outcome problem under nonspeculative lot‐sizing costs. First, we identify nontrivial problem classes for which this problem is polynomially solvable. Second, if we relax any of the parameter assumptions, we show that (except for one case) finding a single Pareto efficient outcome is an ‐hard task in general. Finally, we shed some light on the task of describing the Pareto frontier. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 386–402, 2014  相似文献   

13.
We study a single batching machine scheduling problem with transportation and deterioration considerations arising from steel production. A set of jobs are transported, one at a time, by a vehicle from a holding area to the single batching machine. The machine can process several jobs simultaneously as a batch. The processing time of a job will increase if the duration from the time leaving the holding area to the start of its processing exceeds a given threshold. The time needed to process a batch is the longest of the job processing times in the batch. The problem is to determine the job sequence for transportation and the job batching for processing so as to minimize the makespan and the number of batches. We study four variations (P1, P2, P3, P4) of the problem with different treatments of the two criteria. We prove that all the four variations are strongly NP‐hard and further develop polynomial time algorithms for their special cases. For each of the first three variations, we propose a heuristic algorithm and analyze its worst‐case performance. For P4, which is to find the Pareto frontier, we provide a heuristic algorithm and an exact algorithm based on branch and bound. Computational experiments show that all the heuristic algorithms perform well on randomly generated problem instances, and the exact algorithm for P4 can obtain Pareto optimal schedules for small‐scale instances. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 269–285, 2014  相似文献   

14.
Consider a single‐item, periodic review, infinite‐horizon, undiscounted, inventory model with stochastic demands, proportional holding and shortage costs, and full backlogging. Orders can arrive in every period, and the cost of receiving them is negligible (as in a JIT setting). Every T periods, one audits the current stock level and decides on deliveries for the next T periods, thus incurring a fixed audit cost and—when one schedules deliveries—a fixed order cost. The problem is to find a review period T and an ordering policy that satisfy the average cost criterion. The current article extends an earlier treatment of this problem, which assumed that the fixed order cost is automatically incurred once every T periods. We characterize an optimal ordering policy when T is fixed, prove that an optimal review period T** exists, and develop a global search algorithm for its computation. We also study the behavior of four approximations to T** based on the assumption that the fixed order cost is incurred during every cycle. Analytic results from a companion article (where μ/σ is large) and extensive computational experiments with normal and gamma demand test problems suggest these approximations and associated heuristic policies perform well when μ/σ ≥ 2. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 329–352, 2000  相似文献   

15.
We study a parallel machine scheduling problem, where a job j can only be processed on a specific subset of machines Mj, and the Mj subsets of the n jobs are nested. We develop a two‐phase heuristic for minimizing the total weighted tardiness subject to the machine eligibility constraints. In the first phase, we compute the factors and statistics that characterize a problem instance. In the second phase, we propose a new composite dispatching rule, the Apparent Tardiness Cost with Flexibility considerations (ATCF) rule, which is governed by several scaling parameters of which the values are determined by the factors obtained in the first phase. The ATCF rule is a generalization of the well‐known ATC rule which is very widely used in practice. We further discuss how to improve the dispatching rule using some simple but powerful properties without requiring additional computation time, and the improvement is quite satisfactory. We apply the Sequential Uniform Design Method to design our experiments and conduct an extensive computational study, and we perform tests on the performance of the ATCF rule using a real data set from a large hospital in China. We further compare its performance with that of the classical ATC rule. We also compare the schedules improved by the ATCF rule with what we believe are Near Optimal schedules generated by a general search procedure. The computational results show that especially with a low due date tightness, the ATCF rule performs significantly better than the well‐known ATC rule generating much improved schedules that are close to the Near Optimal schedules. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 249–267, 2017  相似文献   

16.
This paper considers the problem of computing optimal ordering policies for a product that has a life of exactly two periods when demand is random. Initially costs are charged against runouts (stockouts) and outdating (perishing). By charging outdating costs according to the expected amount of outdating one period into the future, a feasible one period model is constructed. The central theorem deals with the n-stage dynamic problem and demonstrates the appropriate cost functions are convex in the decision variable and also provides bounds on certain derivatives. The model is then generalized to include ordering and holding costs. The paper is concluded with a discussion of the infinite horizon problem.  相似文献   

17.
This paper presents a deterministic approach to schedule patients in an ambulatory surgical center (ASC) such that the number of postanesthesia care unit nurses at the center is minimized. We formulate the patient scheduling problem as new variants of the no‐wait, two‐stage process shop scheduling problem and present computational complexity results for the new scheduling models. Also, we develop a tabu search‐based heuristic algorithm to solve the patient scheduling problem. Our algorithm is shown to be very effective in finding near optimal schedules on a set of real data from a university hospital's ASC. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

18.
We investigate the problem of determining lot sizes for multiple items when the expected percentage of acceptable output increases with the duration of the production run, usually due to adjustments made during the early part of the production run. Such problems arise in metal stamping, textile finishing processes, and a variety of other industries. The goal is to minimize the total cost of production, inventory holding costs, and setup costs (where applicable). We develop a heuristic procedure based on a Lagrangian relaxation that differs from relaxations used in earlier studies. We use various properties of the objective function to guide the adjustment of the initial solution from the relaxation toward feasibility. Computational results indicate that, on the average, the heuristic produces solutions within 4.9% of the lower bound obtained from the Lagrangian relaxation. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
We address the capacitated lot‐sizing and scheduling problem with setup times, setup carry‐over, back‐orders, and parallel machines as it appears in a semiconductor assembly facility. The problem can be formulated as an extension of the capacitated lot‐sizing problem with linked lot‐sizes (CLSPL). We present a mixed integer (MIP) formulation of the problem and a new solution procedure. The solution procedure is based on a novel “aggregate model,” which uses integer instead of binary variables. The model is embedded in a period‐by‐period heuristic and is solved to optimality or near‐optimality in each iteration using standard procedures (CPLEX). A subsequent scheduling routine loads and sequences the products on the parallel machines. Six variants of the heuristic are presented and tested in an extensive computational study. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

20.
We consider the problem of scheduling N jobs on M parallel machines so as to minimize the maximum earliness or tardiness cost incurred for each of the jobs. Earliness and tardiness costs are given by general (but job-independent) functions of the amount of time a job is completed prior to or after a common due date. We show that in problems with a nonrestrictive due date, the problem decomposes into two parts. Each of the M longest jobs is assigned to a different machine, and all other jobs are assigned to the machines so as to minimize their makespan. With these assignments, the individual scheduling problems for each of the machines are simple to solve. We demonstrate that several simple heuristics of low complexity, based on this characterization, are asymptotically optimal under mild probabilistic conditions. We develop attractive worst-case bounds for them. We also develop a simple closed-form lower bound for the minimum cost value. The bound is asymptotically accurate under the same probabilistic conditions. In the case where the due date is restrictive, the problem is more complex only in the sense that the set of initial jobs on the machines is not easily characterized. However, we extend our heuristics and lower bounds to this general case as well. Numerical studies exhibit that these heuristics perform excellently even for small- or moderate-size problems both in the restrictive and nonrestrictive due-date case. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号