首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
文章提出了一种基于分支线加载谐振器的三频带通滤波器的设计方法。通过理论分析和全波仿真发现,提出的分支线加载谐振器的奇偶模谐振频率均可以灵活的加以控制。基于这种新型的谐振器,设计了一个三频带通滤波器,该滤波器具有很小的插入损耗和很好的选择性。提出的设计与实验测试结果基本吻合。  相似文献   

2.
本文介绍一种20MHz-50MHz带通滤波器的设计方法,给出了具体电路以及调试结果,该滤波器上有成本低,性能好,相对频带宽的特点。该滤波器在图像通信中已作中频滤波器使用。  相似文献   

3.
讨论了抽取滤波器的结构及频率特性,提出了一种高效抽取滤波器——级联积分梳状滤波器。是一种线性相位FIR滤波器,由工作在高抽样率的级联理想积分器和低抽样率的级联微分器组成,根据抗混叠和抗镜像的指标确定所需的级联数目N即可,运用FPGA设计的方法,进行了功能仿真和波形仿真,验证了抽取滤波器的正确性。  相似文献   

4.
数字信道化技术是现代雷达侦测系统的重要组成部分,短时傅里叶变换(STFT)算法是实现数字信道化常用的一种算法。该算法所构建的数字滤波器组具有滤波特性一致、运算量少的优点,通过测量滤波器组的输出可以确定输入脉冲信号的参数,然而该算法对于接收机截取的脉冲信号与实际脉冲信号不匹配所测量的参数误差较大。为改善参数测量精度,提出了一种基于STFT信道化的雷达脉冲参数测量的改进算法,该方法在信道化基础上引进Haar小波变换对脉冲到达时间精确提取,通过相关累加对脉冲信号幅度精确测量。通过仿真分析验证了算法的有效性。  相似文献   

5.
针对卫星导航信道模拟器信号仿真中,传统伪距多普勒模拟方法瞬时控制精度差、滤波器资源占用较大的不足,提出了基于拉格朗日插值延迟滤波器及Farrow结构实现的伪距多普勒模拟方法。在分析信道模拟器系统架构的基础上,建立了多普勒模拟方法的模型,包括延时计算模块和可变延迟滤波器两部分。与多速率采样数字延迟滤波器方法比较,该方法滤波器系数个数约为后者的0.2%,并且改变时延特性时,仅需更新1个参数。信道模拟器实测数据结果表明使用该方法伪码多普勒模拟精度可以达到0.1mHz。  相似文献   

6.
针对卫星导航信道模拟器信号仿真中,传统伪距多普勒模拟方法瞬时控制精度差、滤波器资源占用较大的不足,提出了基于拉格朗日插值延迟滤波器及Farrow结构实现的伪距多普勒模拟方法。在分析信道模拟器系统架构的基础上,建立了多普勒模拟方法的模型,包括延时计算模块和可变延迟滤波器两部分。与多速率采样数字延迟滤波器方法比较,该方法滤波器系数个数约为后者的0.2%,并且改变时延特性时,仅需更新1个参数。信道模拟器实测数据结果表明使用该方法伪码多普勒模拟精度可以达到0.1mHz。  相似文献   

7.
提出一种稳定的IR自适应滤波器,并给出了系数迭代的非线性梯度算法。计算机模拟结果表明:它能够有效抑制JSR很高的单频连续波(CW)干扰及部分频带型窄带干扰,从而使FIR滤波器的固有缺陷得以克服。  相似文献   

8.
RTDX与Matlab实现基于DSP的FIR滤波器设计   总被引:2,自引:0,他引:2  
介绍了一种RTDX与Matlab结合设计基于DSP的FIR数字滤波器的方法.在VB中调用Matlab进行指定特性FIR数字滤波器设计,获得各阶权系数,然后调用RTDX,实时地向目标硬件传递该系数,从而实现了基于DSP的FIR数字滤波器精确设计,提高了DSP算法软件的设计效率.并对TI的RTDX技术及使用方法作了相关介绍.  相似文献   

9.
针对固定窗口算法实现点乘运算的椭圆曲线密码,基于符号变换故障攻击原理,通过分析不同故障模型下的密钥恢复过程,给出一种能够解决“零块失效”问题的改进故障分析方法,并进行仿真实验。实验结果表明:采用固定窗口算法的椭圆曲线密码易遭受故障攻击,10min内即可恢复NIST-192完整密钥。该故障分析方法也适用于其他采用点乘运算的密码算法。  相似文献   

10.
本文说明了通过计算机完成的毫米波平面电路波导滤波器的设计。设计结果与实验一致性能较好。该计算机程序稍加变换就可应用来设计其它类型的微波滤波器。  相似文献   

11.
针对数字Stretch处理在大抽取倍数情况下硬件资源消耗大、难以工程实现的问题,提出了层叠分段快速傅里叶变换处理的数字Stretch实现算法,将数字混频后的数据序列通过层叠分段与重组,利用小点数的快速傅里叶变换运算实现数字Stretch处理。实测数据验证了算法的有效性。资源消耗分析表明,与常规的数据滤波抽取处理方法相比,该算法可有效减少数字Stretch处理的硬件资源消耗。  相似文献   

12.
为提高全球导航卫星系统接收机抑制带内窄带干扰的能力,提出一种采用复系数自适应陷波器的时域滤波干扰抑制方法。在数字基带通过自适应算法调整复数滤波器的频率参数,以实时检测和跟踪窄带干扰的中心频率。仿真结果表明,该方法可以快速、有效地抑制固定频率的窄带干扰和线性调频干扰,提高接收机在干扰条件下的捕获性能。其干扰抑制性能优于实系数自适应陷波器的干扰抑制方法。  相似文献   

13.
为降低充水圆柱壳受内部点声源激励时的水下辐射噪声,在其外壳上敷设气囊,形成气囊圆柱壳。为指导气囊圆柱壳的设计,将充水裸圆柱壳和充水气囊圆柱壳分别简化为单、双层无限长隔板。比较隔板、气体与水的波阻抗,分析气体声速与层厚对双层无限长隔板在平面声波入射时的低频声辐射的影响机理。分析表明,声速小的气体和适当的气层厚度可以降低双层障板的辐射噪声。采用声无限元法计算气囊圆柱壳的水下声辐射,结论与对隔板的机理分析吻合。优化设计出的充水CO2气囊圆柱壳的水下辐射声功率与远场辐射声压明显低于充水裸圆柱壳。  相似文献   

14.
针对视频编码中存在的各种不同的亚像素插值方法,提出了一种支持多种标准的可配置插值结构.该结构采用2个独立的8阶插值滤波器,每个滤波器配置一个独立参数寄存器,可灵活配置任意1/4像素位置的滤波系数,从而实现对各种亚像素插值方法的支持.2个滤波器采用两步法策略进行插值,可以减少约46%的计算量.采用SMIC 0.13μm CMOS标准单元工艺对该结构进行综合,其工作频率可以达到 400MHz,面积约为32.6k门.实验结果显示,该滤波结构工作在250MHz时,可满足1920×1080、30fps的高清视频应用的实时插值计算.  相似文献   

15.
程控滤波器制作与探讨   总被引:1,自引:0,他引:1  
系统以FPGA器件和微处理器为核心构成,由程控放大器、参数可调滤波器、简易幅频特性测试仪和控制显示单元四部分组成。其中程控放大器增益为(0~60)dB,10 dB步进;在单片FPGA器件中集成了低通、高通和椭圆三种数字滤波器;滤波器截止频率和放大器放大倍数可通过4×4键盘设置并在液晶上显示;幅频特性测试仪可绘出所测系统的幅频特性曲线。整个系统设计方案先进,精度高,各项指标均满足设计要求。  相似文献   

16.
基于线性二次型调节器(Linear Quadratic Regulator,LQR)控制方法,设计一种频域加权LQR控制器;通过对其常用滤波器进行改进,提出一种新型滤波器设计思路.当振源频率低于执行器下限响应频率,导致执行器输出减小时,通过改变滤波器参数、增大低频部分权重及控制力,可提高低于执行器响应下限频段的控制性能...  相似文献   

17.
介绍了一种基于估计熵的自适应模糊滤波器 ,并将其应用于宽带噪声中火箭遥测速变信号的数字滤波。讨论了自适应模糊滤波算法 ,给出了应用实验结果。分析和实验表明 ,这种新型滤波器能根据信号的复杂程度自动调节其参数 ,对宽带噪声中非平稳随机信号有较好的滤波效果  相似文献   

18.
现有的抗干扰滤波器在通道非理想特性下会导致接收机测量零值发生偏移,且偏移量与干扰参数相关,其已成为高精度测距接收机实现其精度提升的主要障碍。针对上述问题,从对称通道特性出发,给出一种无偏的时域抗干扰滤波器设计技术。解决了传统的时域抗干扰滤波器在非理想信道下测量零值偏移的问题,且工程实现简单。理论分析和仿真实验进一步验证了方法的有效性,采用该方法可以使测量零值偏移小于0.2 ns。  相似文献   

19.
基于MATLAB的FIR数字滤波器典型设计   总被引:1,自引:0,他引:1  
就MATLAB在数字信号处理方面的应用作了一些研究,主要研究在MATLAB环境下FIR数字滤波器的典型设计方法:窗口法.列举具体实例比较了 Hanning窗、Hamming窗、Blackman窗、Kaiser窗各自的频率响应曲线.应用MATLAB信号处理工具箱及其扩展函数,使得如何在数字信号处理过程中较复杂的数字滤波器设计问题得以解决,用MATLAB进行仿真设计,已成为实现FIR数字滤波器设计必不可少的实用技术.  相似文献   

20.
针对不同阶数的Kalman滤波器具有不同的跟踪能力与跟踪效率之间存在的矛盾,设计了一种模糊自适应变维跟踪算法(FAVD)。该算法使用两级滤波器,根据目标机动性的变化,适当地调整滤波器的阶数,使跟踪结果快速收敛,很好地解决了矛盾。同时通过模糊推理机制,在线调节高阶滤波器的参数,使适用范围大大增强,提高自适应能力,从而使该算法可以采用较少的模型覆盖较多的目标运动模式,达到很好的跟踪滤波效果,计算量也会大大减小。通过对计算机仿真结果分析表明,提出的算法具有可靠、计算简便、快速等特点,模型滤波精度较高,并可实现实时跟踪预测,具有一定的理论价值和实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号