首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a kurtosis correction (KC) method for constructing the X? and R control charts for symmetrical long‐tailed (leptokurtic) distributions. The control charts are similar to the Shewhart control charts and are very easy to use. The control limits are derived based on the degree of kurtosis estimated from the actual (subgroup) data. It is assumed that the underlying quality characteristic is symmetrically distributed and no other distributional and/or parameter assumptions are made. The control chart constants are tabulated and the performance of these charts is compared with that of the Shewhart control charts. For the case of the logistic distribution, the exact control limits are derived and are compared with the KC method and the Shewhart method. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

2.
This paper proposes a skewness correction (SC) method for constructing the and R control charts for skewed process distributions. Their asymmetric control limits (about the central line) are based on the degree of skewness estimated from the subgroups, and no parameter assumptions are made on the form of process distribution. These charts are simply adjustments of the conventional Shewhart control charts. Moreover, the chart is almost the same as the Shewhart chart if the process distribution is known to be symmetrical. The new charts are compared with the Shewhart charts and weighted variance (WV) control charts. When the process distribution is in some neighborhood of Weibull, lognormal, Burr or binomial family, simulation shows that the SC control charts have Type I risk (i.e., probability of a false alarm) closer to 0.27% of the normal case. Even in the case where the process distribution is exponential with known mean, not only the control limits and Type I risk, but also the Type II risk of the SC charts are closer to those of the exact and R charts than those of the WV and Shewhart charts. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 555–573, 2003  相似文献   

3.
This article considers the problem of monitoring Poisson count data when sample sizes are time varying without assuming a priori knowledge of sample sizes. Traditional control charts, whose control limits are often determined before the control charts are activated, are constructed based on perfect knowledge of sample sizes. In practice, however, future sample sizes are often unknown. Making an inappropriate assumption of the distribution function could lead to unexpected performance of the control charts, for example, excessive false alarms in the early runs of the control charts, which would in turn hurt an operator's confidence in valid alarms. To overcome this problem, we propose the use of probability control limits, which are determined based on the realization of sample sizes online. The conditional probability that the charting statistic exceeds the control limit at present given that there has not been a single alarm before can be guaranteed to meet a specified false alarm rate. Simulation studies show that our proposed control chart is able to deliver satisfactory run length performance for any time‐varying sample sizes. The idea presented in this article can be applied to any effective control charts such as the exponentially weighted moving average or cumulative sum chart. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 625–636, 2013  相似文献   

4.
Nonparametric classes of life distributions are usually based on the pattern of aging in some sense. The common parametric families of life distributions also feature monotone aging. In this paper we consider the class of log‐concave distributions and the subclass of concave distributions. The work is motivated by the fact that most of the common parametric models of life distributions (including Weibull, Gamma, log‐normal, Pareto, and Gompertz distributions) are log‐concave, while the remaining life of maintained and old units tend to have a concave distribution. The classes of concave and log‐concave distributions do not feature monotone aging. Nevertheless, these two classes are shown to have several interesting and useful properties. We examine the closure of these classes under a number of reliability operations, and provide sharp reliability bounds for nonmaintained and maintained units having life distribution belonging to these classes. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 419–433, 1999  相似文献   

5.
Motivated by applications to service systems, we develop simple engineering approximation formulas for the steady‐state performance of heavily loaded G/GI/n+GI multiserver queues, which can have non‐Poisson and nonrenewal arrivals and non‐exponential service‐time and patience‐time distributions. The formulas are based on recently established Gaussian many‐server heavy‐traffic limits in the efficiency‐driven (ED) regime, where the traffic intensity is fixed at ρ > 1, but the approximations also apply to systems in the quality‐and‐ED regime, where ρ > 1 but ρ is close to 1. Good performance across a wide range of parameters is obtained by making heuristic refinements, the main one being truncation of the queue length and waiting time approximations to nonnegative values. Simulation experiments show that the proposed approximations are effective for large‐scale queuing systems for a significant range of the traffic intensity ρ and the abandonment rate θ, roughly for ρ > 1.02 and θ > 2.0. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 187–217, 2016  相似文献   

6.
Conventional control charts are often designed to optimize out‐of‐control average run length (ARL), while constraining in‐control ARL to a desired value. The widely employed grid search approach in statistical process control (SPC) is time‐consuming with unsatisfactory accuracy. Although the simulation‐based ARL gradient estimators proposed by Fu and Hu [Manag Sci 45 (1999), 395–413] can alleviate this issue, it still requires a large number of simulation runs to significantly reduce the variance of gradient estimators. This article proposes a novel ARL gradient estimation approach based on integral equation for efficient analysis and design of control charts. Although this article compares with the results of Fu and Hu [Manag Sci 45 (1999), 395–413] based on the exponentially weighted moving average (EWMA) control chart, the proposed approach has wide applicability as it can generally fit into any control chart with Markovian property under any distributions. It is shown that the proposed method is able to provide a fast, accurate, and easy‐to‐implement algorithm for the design and analysis of EWMA charts, as compared to the simulation‐based gradient estimation method. Moreover, the proposed gradient estimation method facilitates the computation of high‐order derivatives that are valuable in sensitivity analysis. The code is written in Matlab, which is available on request. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 223–237, 2014  相似文献   

7.
In this article, we study the Shewhart chart of Q statistics proposed for the detection of process mean shifts in start‐up processes and short runs. Exact expressions for the run‐length distribution of this chart are derived and evaluated using an efficient computational procedure. The procedure can be considerably faster than using direct simulation. We extend our work to analyze the practice of requiring multiple signals from the chart before responding, a practice sometimes followed with Shewhart charts. The results show that waiting to receive multiple signals severely reduces the probability of quickly detecting shifts in certain cases, and therefore may be considered a risky practice. Operational guidelines for practitioners implementing the chart are discussed. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

8.
Lifetime experiments are common in many research areas and industrial applications. Recently, process monitoring for lifetime observations has received increasing attention. However, some existing methods are inadequate as neither their in control (IC) nor out of control (OC) performance is satisfactory. In addition, the challenges associated with designing robust and flexible control schemes have yet to be fully addressed. To overcome these limitations, this article utilizes a newly developed weighted likelihood ratio test, and proposes a novel monitoring strategy that automatically combines the likelihood of past samples with the exponential weighted sum average scheme. The proposed Censored Observation‐based Weighted‐Likelihood (COWL) control chart gives desirable IC and OC performances and is robust under various scenarios. In addition, a self‐starting control chart is introduced to cope with the problem of insufficient reference samples. Our simulation shows a stronger power in detecting changes in the censored lifetime data using our scheme than using other alternatives. A real industrial example based on the breaking strength of carbon fiber also demonstrates the effectiveness of the proposed method. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 631–646, 2017  相似文献   

9.
Nonparametric control charts are useful in statistical process control when there is a lack of or limited knowledge about the underlying process distribution, especially when the process measurement is multivariate. This article develops a new multivariate self‐starting methodology for monitoring location parameters. It is based on adapting the multivariate spatial rank to on‐line sequential monitoring. The weighted version of the rank‐based test is used to formulate the charting statistic by incorporating the exponentially weighted moving average control scheme. It is robust to non‐normally distributed data, easy to construct, fast to compute and also very efficient in detecting multivariate process shifts, especially small or moderate shifts which occur when the process distribution is heavy‐tailed or skewed. As it avoids the need for a lengthy data‐gathering step before charting and it does not require knowledge of the underlying distribution, the proposed control chart is particularly useful in start‐up or short‐run situations. A real‐data example from white wine production processes shows that it performs quite well. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 91–110, 2012  相似文献   

10.
We consider design of control charts in the presence of machine stoppages that are exogenously imposed (as under jidoka practices). Each stoppage creates an opportunity for inspection/repair at reduced cost. We first model a single machine facing opportunities arriving according to a Poisson process, develop the expressions for its operating characteristics and construct the optimization problem for economic design of a control chart. We, then, consider the multiple machine setting where individual machine stoppages may create inspection/repair opportunities for other machines. We develop exact expressions for the cases when all machines are either opportunity‐takers or not. On the basis of an approximation for the all‐taker case, we then propose an approximate model for the mixed case. In a numerical study, we examine the opportunity taking behavior of machines in both single and multiple machine settings and the impact of such practices on the design of an X – Q C chart. Our findings indicate that incorporating inspection/repair opportunities into QC chart design may provide considerable cost savings. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

11.
This paper introduces a new replenishment policy for inventory control in a two‐level distribution system consisting of one central warehouse and an arbitrary number of nonidentical retailers. The new policy is designed to control the replenishment process at the central warehouse, using centralized information regarding the inventory positions and demand processes of all installations in the system. The retailers on the other hand are assumed to use continuous review (R, Q) policies. A technique for exact evaluation of the expected inventory holding and backorder costs for the system is presented. Numerical results indicate that there are cases when considerable savings can be made by using the new (α0, Q0) policy instead of a traditional echelon‐ or installation‐stock (R, Q) policy. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 798–822, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10040  相似文献   

12.
Most modern processes involve multiple quality characteristics that are all measured on attribute levels, and their overall quality is determined by these characteristics simultaneously. The characteristic factors usually correlate with each other, making multivariate categorical control techniques a must. We study Phase I analysis of multivariate categorical processes (MCPs) to identify the presence of change‐points in the reference dataset. A directional change‐point detection method based on log‐linear models is proposed. The method exploits directional shift information and integrates MCPs into the unified framework of multivariate binomial and multivariate multinomial distributions. A diagnostic scheme for identifying the change‐point location and the shift direction is also suggested. Numerical simulations are conducted to demonstrate the detection effectiveness and the diagnostic accuracy.© 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

13.
We revisit the capacity investment decision problem studied in the article “Resource Flexibility with Responsive Pricing” by Chod and Rudi [Operations Research 53, (2005) 532–548]. A monopolist firm producing two dependent (substitutable or complementary) products needs to determine the capacity of one flexible resource under demand risk so as to maximize its expected profit. Product demands are linear functions of the prices of both products, and the market potentials are random and correlated. We perform a comparative statics analysis on how demand variability and correlation impact the optimal capacity and the resulting expected profit. In particular, C&R study this problem under the following assumptions/approximations: (i) demand intercepts follow a bivariate Normal distribution; (ii) demand uncertainty is of an additive form; (iii) and under approximate expressions for the optimal capacity and optimal expected profit. We revisit Propositions 2, 3, 4, 5, and 10 of C&R without these assumptions and approximations, and show that these results continue to hold (i) for the exact expressions for the optimal expected profit and optimal capacity, and (ii) under any arbitrary continuous distribution of demand intercepts. However, we also show that the additive demand uncertainty is a critical assumption for the C&R results to hold. In particular, we provide a case of multiplicative uncertainty under which the C&R results (Propositions 2 and 3) fail. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

14.
Control charts are widely used for process surveillance. The design of a control chart refers to the choice of sample size, the width of the control limits, and the interval between samples. Economic designs have been widely investigated and shown to be an effective method of determining control chart parameters. This article describes two different manufacturing process models to which the X¯ control chart is applied: The first model assumes that the process continues in operation while searches for the assignable cause are made, and the second assumes that the process must be shut down during the search. Economic models of the control chart for these two manufacturing process models are developed, and the sensitivity of the control chart parameters to the choice of model is explored. It is shown that the choice of the proper manufacturing process model is critical because selection of an inappropriate process model may result in significant economic penalties.  相似文献   

15.
MacGregor and Harris (J Quality Technol 25 (1993) 106–118) proposed the exponentially weighted mean squared deviation (EWMS) and the exponentially weighted moving variance (EWMV) charts as ways of monitoring process variability. These two charts are particularly useful for individual observations where no estimate of variability is available from replicates. However, the control charts derived by using the approximate distributions of the EWMS and EWMV statistics are difficult to interpret in terms of the average run length (ARL). Furthermore, both control charting schemes are biased procedures. In this article, we propose two new control charts by applying a normal approximation to the distributions of the logarithms of the weighted sum of chi squared random variables, which are respectively functions of the EWMS and EWMV statistics. These new control charts are easy to interpret in terms of the ARL. On the basis of the simulation studies, we demonstrate that the proposed charts are superior to the EWMS and EWMV charts and they both are nearly unbiased for the commonly used smoothing constants. We also compare the performance of the proposed charts with that of the change point (CP) CUSUM chart of Acosta‐Mejia (1995). The design of the proposed control charts is discussed. An example is also given to illustrate the applicability of the proposed control charts. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

16.
A well‐studied problem in airline revenue management is the optimal allocation of seat inventory among different fare‐classes, given a capacity for the flight and a demand distribution for each class. In practice, capacity on a flight does not have to be fixed; airlines can exercise some flexibility on the supply side by swapping aircraft of different capacities between flights as partial booking information is gathered. This provides the airline with the capability to more effectively match their supply and demand. In this paper, we study the seat inventory control problem considering the aircraft swapping option. For theoretical and practical purposes, we restrict our attention to the class of booking limit policies. Our analytical results demonstrate that booking limits considering the swapping option can be considerably different from those under fixed capacity. We also show that principles on the relationship between the optimal booking limits and demand characteristics (size and risk) developed for the fixed‐capacity problem no longer hold when swapping is an option. We develop new principles and insights on how demand characteristics affect the optimal booking limits under the swapping possibility. We also develop an easy to implement heuristic for determining the booking limits under the swapping option and show, through a numerical study, that the heuristic generates revenues close to those under the optimal booking limits. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

17.
Mixed censoring is useful extension of Type I and Type II censoring and combines some advantages of both types of censoring. This paper proposes a general Bayesian framework for designing a variable acceptance sampling scheme with mixed censoring. A general loss function which includes the sampling cost, the time‐consuming cost, the salvage value, and the decision loss is employed to determine the Bayes risk and the corresponding optimal sampling plan. An explicit expression of the Bayes risk is derived. The new model can easily be adapted to create life testing models for different distributions. Specifically, two commonly used distributions including the exponential distribution and the Weibull distribution are considered with a special decision loss function. We demonstrate that the proposed model is superior to models with Type I or Type II censoring. Numerical examples are reported to illustrate the effectiveness of the method proposed. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

18.
The assessment of a Bernoulli utility function is often accomplished by an approximation process which makes use of ever more information on the preference as it is elicited from a decision maker. Simultaneous approximations of the utility function and the underlying distributions are generally not sufficient for the expectations to converge to the expected value of the respective limits. We give various sufficient stability conditions for the expected utility. All these conditions contain some “uniformness”. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
This note presents methods for solving for any one of the four parameters (such as sample size) involved in the construction of distribution-free tolerance limits in terms of the other three. These solutions are based on a normal approximation to the incomplete beta function. Numerical examples indicate that the approximations are very reasonable. Also considered are tolerance limits with a specified precision.  相似文献   

20.
This article introduces two new maximum entropy (ME) methods for modeling the distribution of time to an event. One method is within the classical ME framework and provides characterizations of change point models such as the piecewise exponential distribution. The second method uses the entropy of the equilibrium distribution (ED) for the objective function and provides new characterizations of the exponential, Weibull, Pareto, and uniform distributions. With the same moment constraints, the classical ME and the maximum ED entropy algorithms generate different models for the interarrival time. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 427–434, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号