首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
雷达技术     
连续波雷达(continuous-wave radar)发射连续、等幅电磁波探测活动目标的雷达。按发射信号的形式分,有非调制单频或多频连续波雷达和调频连续波雷达。单频连续波雷达能对目标测速,但不能测距。多频连续波雷达能测距,并能分辨固定目标与活动目标。调频连续波雷达能测  相似文献   

2.
采用DSP的SPORT端口控制16位高速串行DAC,设计了任意电压信号发生器,用于控制Ka波段连续波雷达压控振荡器产生频率可任意调制的发射信号。利用该信号发生器与调制域分析仪,测试了压控振荡器的调制特性和阶跃响应。  相似文献   

3.
为使线性调频连续波 (L FMCW)雷达能获得理论上的高测距精度和距离分辨力 ,在工程应用中对其性能的限制因素倍受关注 ,其中发射信道的非线性放大失真将引起 L FMCW信号功率谱产生边带杂散 ,是限制 L FMCW雷达测距精度和距离分辨力的重要因素之一。依据 L FMCW雷达回波功率谱特性 ,从工程应用角度分析了这种信号功率谱边带杂散对 L FM-CW雷达测距精度和距离分辨力的影响 ,为实现高性能系统设计 ,确定合理的实施方案和相关的技术指标及后续的校正处理提供了理论依据。  相似文献   

4.
调频连续波具有较长的脉宽和较大的信号带宽,通常采用去调频的处理方式,但是,去调频的处理会引入空变的相位误差。从去调频的处理方式入手,根据发射信号相位误差缓变的特点,提出了依据发射信号相位误差模型补偿空变相位误差的方法,并在理论上对该方法进行了推导。该补偿方法分为两步,从差频信号中去除发射信号相位误差,在残余视频相位误差校正之后,通过与补偿函数相乘去除剩余的相位误差。仿真和实测的实验结果表明,该方法能够克服目标距离的限制,有效地补偿空变相位误差带来的影响,提高脉压水平。提出的误差补偿方法能够很好地平衡系统负载、误差补偿精度和算法开销,具有较强实用性。  相似文献   

5.
线性调频连续波(LFMCW)是雷达系统中常用的一种信号形式,调频信号调频线性度是衡量信号质量的一项重要指标。分析了线性调频连续波雷达的调频非线性对距离分辨率的影响,提出使用分段线性拟合的方法估计调频信号的线性度,并对非线性进行校正。仿真结果表明校正后距离分辨率及测距精度都极大的提高。  相似文献   

6.
分析了调频连续波逆合成孔径雷达(FMCW-ISAR)的回波信号特性,讨论了脉冲持续时间内目标连续运动引起的多普勒频移对成像的影响,推导出导致一维距离像主瓣展宽和走动的相位因子,并进一步研究了该相位因子对基于调频连续波逆合成孔径雷达的目标微多普勒特征的影响,在此基础上讨论了调频连续波逆合成孔径雷达目标微多普勒特征与脉冲式逆合成孔径雷达目标微多普勒特征的主要区别.最后的仿真试验验证了理论分析的正确性.  相似文献   

7.
调频连续波合成孔径雷达(FMCW SAR)结合调频连续波与合成孔径成像技术,具有体积小、重量轻、成本低、分辨率高等一系列优点,是新近提出来的一种成像雷达体制。由于FMCW SAR的差频信号在方位向可以转化为调频信号,据此提出了一种基于分数阶傅立叶变换(FRFT)的FMCW SAR成像算法。仿真结果表明,该算法与RD算法相比较,方位向主瓣压缩和旁瓣抑制效果非常明显。  相似文献   

8.
本文介绍了一种高性能的米波段全固态宽带大功率放大器,讨论了设计中的有关理论和实际问题。该放大器在80MHz至210MHz的频率范围内功率增益大于50dB,功率波动小于1dB,输出连续波功率100W,效率达40%~50%呢。本放大器可用于通信、导航、雷达、电子对抗等设备中作功率发射用。  相似文献   

9.
针对压控振荡器调频非线性误差的准确估计与校正问题,提出一种以一维距离像对比度最优为准则的自适应估计与校正方法。本方法建立引入温度变量的压控振荡器频率特性模型,并据此估计出某一温度值对应的调频非线性误差,在对中频回波进行误差补偿和一维脉压后,以一维距离像的对比度最优作为迭代收敛准则,实现调频非线性误差的最优估计与校正。仿真和实测数据结果表明,该方法充分考虑了温度因素对压控振荡器输出频率的影响,能够在不增加硬件复杂度的前提下,通过算法实现对调频非线性误差的估计、跟踪与补偿。与传统基于硬件电路进行估计或校正的方法相比,新方法无需由硬件组成闭环估计通道,且具有实时性强、运算量小、补偿精度高的优点,对于克服实际工程应用中压控振荡器器件的参数漂移问题具有重要指导意义。  相似文献   

10.
几种宽带雷达导引头信号的分析   总被引:5,自引:2,他引:3  
文章介绍了四种高距离分辨力雷达信号:脉内线性调频,线性调频连续波,拉伸处理和步进频率信号。对它们实现高距离分辨力的原理进行了推导,并讨论了在导引头应用条件下的性能。  相似文献   

11.
去调频FM-CW SAR距离维成像研究   总被引:17,自引:0,他引:17       下载免费PDF全文
调频连续波(FM-CW)合成孔径雷达因其体积小、重量轻、成本低及分辨率高等特点越来越受到关注。详细分析了去调频FM-CW SAR距离维成像过程,得到了FM-CW SAR残留视频相位在距离维傅立叶变换过程中被消除的有用结论;分析了影响距离维分辨率的因素,提出了改善FM-CW SAR距离分辨率,同时降低距离维采样率的方法。理论分析表明,去调频连续波SAR同样存在斜置现象,因此,还详细分析了FM-CW SAR斜置的产生以及去斜的方法,提出了包含去斜的距离维成像算法,为方位向更好的聚焦提供了条件。  相似文献   

12.
本文介绍声表面波器件在数字调频、调相调解器中的应用。叙述了声表面波压控振荡器工作原理及其调频特性,讨论了在调解器中应用声表面波器件的可能性,以及作为一种新型器件对系统性能的贡献;最后简介目前的应用动态。  相似文献   

13.
天波超视距雷达为了适应电离层不同高度是把电磁波折射到预定的探测空域,通常工作在(5-30)MHz的宽阔域范围。探测距离远达(800-3500)km的小雷达截面目标,发射平均功率常达几百千瓦,早期使用脉冲体制,现今多用连续波体制以获得更大的平均功率。采用连续波体制时要隔离发射天线信号对接收系统的泄漏,发射和接收天线一般要离开近百km。  相似文献   

14.
用三维全电磁PIC方法对一种利用反馈微波信号调制入射电子束的新型虚阴极振荡器进行了粒子模拟研究。在外加450kV电压的自洽发射状态下,得到的微波峰值输出功率可达数百兆瓦,微波主频位于C波段,瞬时峰值效率≥5%,主模式为TE10模,与试验结果符合较好。  相似文献   

15.
1 引言微波信号源是微波通信系统关键部件之一,对于小容量微波通信机来说,微波介质振荡器是比较合适的本振源。微波介质振荡器具有成本低、体积小、重量轻、耗电省、频率稳定度高、调频噪声低以及通用性强等优点。一般微波通信机要求介质振荡器具有更高的频率温度稳定性,而这是微波通信机设计人员感到棘手的问题。本文是作者在提高微波场效应管介质振荡器频率温度稳定性方面所做的一些工作成果,文中列出了用于某微波通信机的介质振荡器实际达到的频率温度稳定性指标。  相似文献   

16.
雷锡恩公司生产的改进后的霍克导弹,是在训练演习的时候,对着目标靶机从导弹发射器上发射的。埃及的防空部队将在春天开始接收首批交付的12个导弹连。雷锡恩公司生产的改进后的霍克防空导弹截获和发控设备(如上图),包括脉冲截获雷达,(从左到右),信息协调中心,发控数据处理和通讯中心;导弹连控制中心,包括雷达及连续波截获雷达。脉冲截获雷达天线(装在明显的位置上),在D——波段工作,用它接收从目标反射回来的能量,脉冲截获雷达系统有一个动目标显示器和参差脉冲重复率。射频脉冲由适合于动目标显示的稳定高功率振荡器产生。  相似文献   

17.
为进一步提高虚阴极振荡器输出微波的功率和效率,同时为使其输出微波的频率更加稳定、模式更加单纯,设计了一种轴向提取的反馈式虚阴极振荡器,并利用粒子模拟方法分析了反馈装置对输出微波的影响,得到了一些规律性的认识。模拟结果表明,在相同的运行条件下,与不加反馈装置时的普通虚阴极振荡器相比,这种反馈式虚阴极振荡器的微波输出功率可以提高两倍以上,而且带宽窄、模式纯。  相似文献   

18.
半导体激光器的输出光功率受温度的影响较大,当工作在平衡温度时,其输出光功率受动态平衡温度调制,给调频体制激光雷达测量性能带来影响。分析了温度、阈值电流、斜率效率三者之间的关系,并通过构建的测量系统测量了50 mW半导体激光器的光功率输出特性,根据理论和实验结果分析了其对调频体制激光雷达的影响。  相似文献   

19.
针对小型无人机目标雷达回波弱、目标检测难的问题,研究了在线性调频连续波(linear frequency modulation continuous wave, LFMCW)体制雷达下的长时间相参积累方法。通过推导LFMCW雷达回波表达式,提出了基于时域差频信号线性调频-Z变换的拉东-傅里叶变换实现方法。评估了该方法的运算量,并与频域实现的方法进行对比。经过仿真和实测数据验证了本文算法对LFMCW雷达下的弱目标相参积累的有效性。  相似文献   

20.
本文以两个典型的电视和调频广播发射天线为例,论述了城市电视和调频广播发射台的电磁污染计算方法,汇集了各种常用电视和调频广播天线的空间场强计算公式及有关测试图表、曲线,给出了便于各有关部门使用的描绘电磁污染范围的威力图的绘制方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号