首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper is concerned with the determination of explicit expressions for economic order quantities and reorder levels, such that the cost of ordering and holding inventory is minimized for specific backorder constraints. Holding costs are applied either to inventory position or on-hand inventory, and the backorder constraint is considered in terms of the total number of backorders per year or the average number of backorders at any point in time. Through the substitution of a new probability density function in place of the normal p.d.f., explicit expressions are determined for the economic order quantities and the reorder points. The resulting economic order quantities are independent of all backorder constraints. It is also concluded that under certain conditions, the minimization of ordering costs and inventory holding costs (applied to inventory position), subject to a backorder constraint, is equivalent in terms of reorder levels to minimization of the safety level dollar investment subject to the same backorder constraint.  相似文献   

2.
This paper describes an empirical evaluation of several approximations to Hadley and Whitin's approximate continuous review inventory model with backorders. It is assumed that lead time demand is normally distributed and various exponential functions are used to approximate the upper tail of this distribution. These approximations offer two important advantages in computing reorder points and reorder quantities. One advantage is that normal tables are no longer required to obtain solutions, and a second advantage is that solutions may be obtained directly rather than iteratively. These approximations are evaluated on two distinct inventory systems. It is shown that an increase in average annual cost of less that 1% is expected as a result of using these approximations. The only exception to this statement is with inventory systems in which a high shortage cost is specified and ordering costs are unusually low.  相似文献   

3.
This paper considers the problem of computing reorder points and order quantities for continuous review inventory systems subject to either a service level constraint or a constraint on the average fraction of time out of stock. It is demonstrated that three apparently distinct models are equivalent under these circumstances. Using this equivalence, streamlined algorithms for computed lot sizes and recorder points are developed.  相似文献   

4.
Models are formulated for determining continuous review (Q, r) policies for a multiitem inventory subject to constraints. The objective function is the minimization of total time-weighted shortages. The constraints apply to inventory investment and reorder workload. The formulations are thus independent of the normal ordering, holding, and shortage costs. Two models are presented, each representing a convex programming problem. Lagrangian techniques are employed with the first, simplified model in which only the reorder points are optimized. In the second model both the reorder points and the reorder quantities are optimized utilizing penalty function methods. An example problem is solved for each model. The final section deals with the implementation of these models in very large inventory systems.  相似文献   

5.
This paper develops and applies a nonparametric bootstrap methodology for setting inventory reorder points and a simple inequality for identifying existing reorder points that are unreasonably high. We demonstrate that an empirically based bootstrap method is both feasible and calculable for large inventories by applying it to the 1st Marine Expeditionary Force General Account, an inventory consisting of $20–30 million of stock for 10–20,000 different types of items. Further, we show that the bootstrap methodology works significantly better than the existing methodology based on mean days of supply. In fact, we demonstrate performance equivalent to the existing system with a reduced inventory at one‐half to one‐third the cost; conversely, we demonstrate significant improvement in fill rates and other inventory performance measures for an inventory of the same cost. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 459–478, 2000  相似文献   

6.
Considered is a two-level inventory system with one central warehouse and N retailers facing different independent compound Poisson demand processes. The retailers replenish from the warehouse and the warehouse from an outside supplier. All facilities apply continuous review installation stock (R, Q) policies with different reorder points and batch quantities. Presented is a new approximate method for evaluation of holding and shortage costs, which can be used to select optimal policies. The accuracy of the approximation is evaluated by comparison with exact and simulated results. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
A classical and important problem in stochastic inventory theory is to determine the order quantity (Q) and the reorder level (r) to minimize inventory holding and backorder costs subject to a service constraint that the fill rate, i.e., the fraction of demand satisfied by inventory in stock, is at least equal to a desired value. This problem is often hard to solve because the fill rate constraint is not convex in (Q, r) unless additional assumptions are made about the distribution of demand during the lead‐time. As a consequence, there are no known algorithms, other than exhaustive search, that are available for solving this problem in its full generality. Our paper derives the first known bounds to the fill‐rate constrained (Q, r) inventory problem. We derive upper and lower bounds for the optimal values of the order quantity and the reorder level for this problem that are independent of the distribution of demand during the lead time and its variance. We show that the classical economic order quantity is a lower bound on the optimal ordering quantity. We present an efficient solution procedure that exploits these bounds and has a guaranteed bound on the error. When the Lagrangian of the fill rate constraint is convex or when the fill rate constraint does not exist, our bounds can be used to enhance the efficiency of existing algorithms. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 635–656, 2000  相似文献   

8.
In this article we consider an item for which a continuous review, reorder point, order quantity inventory control system is used. The amount of safety stock required depends upon, among other factors, the average value and variability of the length of the replenishment lead time. One way to reduce these quantities is to split orders among two or more vendors. In this article the random lead times are assumed to have Weibull distributions. This permits the development of analytic expressions for the reduction in the expected value and variability of total demand until the critical first (earliest) delivery received from a vendor. An expression is also obtained for the reorder point that provides a given probability of no stockout prior to the first delivery. Lower bounds are given on the order quantity so as to ensure that the probability of a stockout before any one of the later (second, third, etc.) deliveries is sufficiently small to be considered negligible. The analytic and tabular results can be used to estimate the benefits (reduced carrying costs and/or increased service level) of order splitting.  相似文献   

9.
The iteration usually necessary for simultaneous determination of minimum-cost order quantity and reorder point in (Q, r) inventory systems may be eliminated by a graphical technique employing dimensionless ratios. This technique is illustrated for three different types of stock-out penalty.  相似文献   

10.
An inventory system is described in which demand information may be incorrectly transmitted from the field to the stocking point. The stocking point employs a forwarding policy which attempts to send out to the field a quantity which, in general, is some function of the observed demand. The optimal ordering rules for the general n-period problem and the steady state case are derived. In addition orderings of the actual reorder points as functions of the errors are presented, as well as some useful economic interpretations and numerical illustrations.  相似文献   

11.
We study an (R, s, S) inventory control policy with stochastic demand, lost sales, zero lead‐time and a target service level to be satisfied. The system is modeled as a discrete time Markov chain for which we present a novel approach to derive exact closed‐form solutions for the limiting distribution of the on‐hand inventory level at the end of a review period, given the reorder level (s) and order‐up‐to level (S). We then establish a relationship between the limiting distributions for adjacent values of the reorder point that is used in an efficient recursive algorithm to determine the optimal parameter values of the (R, s, S) replenishment policy. The algorithm is easy to implement and entails less effort than solving the steady‐state equations for the corresponding Markov model. Point‐of‐use hospital inventory systems share the essential characteristics of the inventory system we model, and a case study using real data from such a system shows that with our approach, optimal policies with significant savings in inventory management effort are easily obtained for a large family of items.  相似文献   

12.
针对初始库存和终止库存不为零的生产与库存问题,通过适当设置需求量,将其化为初始库存和终止库存为零的问题,以便应用重生性质进行求解。  相似文献   

13.
Previous studies criticize the general use of the normal approximation of lead-time demand on the grounds that it can lead to serious errors in safety stock. We reexamine this issue for the distribution of fast-moving finished goods. We first determine the optimal reorder points and quantities by using the classical normal-approximation method and a theoretically correct procedure. We then evaluate the misspecification error of the normal approximation solution with respect to safety stock, logistics-system costs, total costs (logistics costs, including acquisition costs), and fill rates. The results provide evidence that the normal approximation is robust with respect to both cost and service for seven major industry groups. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 165–186, 1997  相似文献   

14.
This study concentrates on distributions of leadtime demand that permit explicit solution to the lot-size, reorder point model. The optimal order size for the general case is first expressed as a function of the economic order quantity and a quantity known as the “residual mean life” in reliability theory. The concept of “no aging” is then utilized to identify a broad class of distributions for which the optimal order size can be determined explicitly, independent of the reorder point.  相似文献   

15.
In order‐quantity reorder‐point formulations for inventory items where backordering is allowed, some of the more common ways to prevent excessive stockouts in an optimal solution are to impose either a cost per unit short, a cost per stockout occasion, or a target fill rate. We show that these popular formulations, both exact and approximate, can become “degenerate” even with quite plausible parameters. By degeneracy we mean any situation in which the formulation either cannot be solved, leads to nonsensical “optimal” solutions, or becomes equivalent to something substantially simpler. We explain the reasons for the degeneracies, yielding new insight into these models, and we provide practical advice for inventory managers. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 686–705, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10037  相似文献   

16.
This article considers a structural equation useful for characterizing the order quantity of several inventory models. A correct interpretation of this equation is provided and it is stressed that the equation should be used in conjunction with another equation for the reorder point. Failure to do so may give rise to improper interpretations and invalid conclusions. A specific case like this is cited for the sake of illustration.  相似文献   

17.
We address a single product, continuous review model with stationary Poisson demand. Such a model has been effectively studied when mean demand is known. However, we are concerned with managing new items for which only a Bayesian prior distribution on the mean is available. As demand occurs, the prior is updated and our control parameters are revised. These include the reorder point (R) and reorder quantity (Q). Deemer, taking a clue from some earlier RAND work, suggested using a model appropriate for known mean, but using a Compound Poisson distribution for demand rather than Poisson to reflect uncertainty about the mean. Brown and Rogers also used this approach but within a periodic review context. In this paper we show how to compute optimum reorder points for a special problem closely related to the problem of real interest. In terms of the real problem, subject to a qualification to be discussed, the reorder points found are upper bounds for the optimum. At the same time, the reorder points found can never exceed those found by the Compound Poisson (Deemer) approach. And they can be smaller than those found when there is no uncertainty about the mean. As a check, the Compound Poisson and proposed approach are compared by simulation.  相似文献   

18.
This article uses game theoretic concepts to analyze the inventory problem with two substitutable products having random demands. It is assumed that the two decision makers (players) who make ordering decisions know the substitution rates and the demand densities for both products. Since each player's decision affects the other's single-period expected profit, game theory is used to find the order quantities when the players use a Nash strategy (i.e., they act rationally). We prove the existence and uniqueness of the Nash solution. It is also shown that when one of the players acts irrationally for the sole purpose of inflicting maximum damage on the other, the maximin strategy for the latter reduces to using the solution for the classical single-period inventory problem. We also discuss the cooperative game and prove that the players always gain if they cooperate and maximize a joint objective function.  相似文献   

19.
This article presents research designed to aid firms who assemble many components into a final product. We assume that purchase quantities are fixed, and that all parts and components are assembled at one stage in a short time. Demand for the final product is represented by a stationary independent and identically distributed random variable; and unmet demand is backordered. Ordering is done on a periodic review basis. We develop infinite horizon, approximate expected cost, and expected service level functions, and we present an algorithm for finding approximately minimum cost reorder points for each part subject to a service level constraint. Extensive results on the accuracy of the approximations are presented. Due to the size of the problem, we present only limited results on the performance of the optimization algorithm.  相似文献   

20.
This paper is concerned with the optimum decision variables found using order quantity, reorder point (Q, R) inventory models. It examines whether the optimum variables (Q* and R*) are necessarily monotonic functions of the backorder cost parameter (or equivalently of the performance objective). For a general class of models it is proved that R* must increase as the performance objective is raised, and an inequality condition is derived which governs how Q* will change. Probability distributions of lead time demand are cited or found for which Q* increases, Q* decreases, and Q* is independent of increases in performance objectives or backorder cost parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号