首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper deals with a two searchers game and it investigates the problem of how the possibility of finding a hidden object simultaneously by players influences their behavior. Namely, we consider the following two‐sided allocation non‐zero‐sum game on an integer interval [1,n]. Two teams (Player 1 and 2) want to find an immobile object (say, a treasure) hidden at one of n points. Each point i ∈ [1,n] is characterized by a detection parameter λi (μi) for Player 1 (Player 2) such that pi(1 ? exp(?λixi)) (pi(1 ? exp(?μiyi))) is the probability that Player 1 (Player 2) discovers the hidden object with amount of search effort xi (yi) applied at point i where pi ∈ (0,1) is the probability that the object is hidden at point i. Player 1 (Player 2) undertakes the search by allocating the total amount of effort X(Y). The payoff for Player 1 (Player 2) is 1 if he detects the object but his opponent does not. If both players detect the object they can share it proportionally and even can pay some share to an umpire who takes care that the players do not cheat each other, namely Player 1 gets q1 and Player 2 gets q2 where q1 + q2 ≤ 1. The Nash equilibrium of this game is found and numerical examples are given. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

2.
We revisit the capacity investment decision problem studied in the article “Resource Flexibility with Responsive Pricing” by Chod and Rudi [Operations Research 53, (2005) 532–548]. A monopolist firm producing two dependent (substitutable or complementary) products needs to determine the capacity of one flexible resource under demand risk so as to maximize its expected profit. Product demands are linear functions of the prices of both products, and the market potentials are random and correlated. We perform a comparative statics analysis on how demand variability and correlation impact the optimal capacity and the resulting expected profit. In particular, C&R study this problem under the following assumptions/approximations: (i) demand intercepts follow a bivariate Normal distribution; (ii) demand uncertainty is of an additive form; (iii) and under approximate expressions for the optimal capacity and optimal expected profit. We revisit Propositions 2, 3, 4, 5, and 10 of C&R without these assumptions and approximations, and show that these results continue to hold (i) for the exact expressions for the optimal expected profit and optimal capacity, and (ii) under any arbitrary continuous distribution of demand intercepts. However, we also show that the additive demand uncertainty is a critical assumption for the C&R results to hold. In particular, we provide a case of multiplicative uncertainty under which the C&R results (Propositions 2 and 3) fail. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

3.
Various methods and criteria for comparing coherent systems are discussed. Theoretical results are derived for comparing systems of a given order when components are assumed to have independent and identically distributed lifetimes. All comparisons rely on the representation of a system's lifetime distribution as a function of the system's “signature,” that is, as a function of the vector p= (p1, … , pn), where pi is the probability that the system fails upon the occurrence of the ith component failure. Sufficient conditions are provided for the lifetime of one system to be larger than that of another system in three different senses: stochastic ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem for hazard rate ordering is established. In the final section, the notion of system signature is used to examine a recently published conjecture regarding componentwise and systemwise redundancy. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 507–523, 1999  相似文献   

4.
In this paper, two different kinds of (N, T)‐policies for an M/M/m queueing system are studied. The system operates only intermittently and is shut down when no customers are present any more. A fixed setup cost of K > 0 is incurred each time the system is reopened. Also, a holding cost of h > 0 per unit time is incurred for each customer present. The two (N, T)‐policies studied for this queueing system with cost structures are as follows: (1) The system is reactivated as soon as N customers are present or the waiting time of the leading customer reaches a predefined time T, and (2) the system is reactivated as soon as N customers are present or the time units after the end of the last busy period reaches a predefined time T. The equations satisfied by the optimal policy (N*, T*) for minimizing the long‐run average cost per unit time in both cases are obtained. Particularly, we obtain the explicit optimal joint policy (N*, T*) and optimal objective value for the case of a single server, the explicit optimal policy N* and optimal objective value for the case of multiple servers when only predefined customers number N is measured, and the explicit optimal policy T* and optimal objective value for the case of multiple servers when only predefined time units T is measured, respectively. These results partly extend (1) the classic N or T policy to a more practical (N, T)‐policy and (2) the conclusions obtained for single server system to a system consisting of m (m ≥ 1) servers. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 240–258, 2000  相似文献   

5.
A 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system consists of m × n components, and fails if and only if k or more components fail in an r × s submatrix. This system can be treated as a reliability model for TFT liquid crystal displays, wireless communication networks, etc. Although an effective method has been developed for evaluating the exact system reliability of small or medium‐sized systems, that method needs extremely high computing time and memory capacity when applied to larger systems. Therefore, developing upper and lower bounds and accurate approximations for system reliability is useful for large systems. In this paper, first, we propose new upper and lower bounds for the reliability of a 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system. Secondly, we propose two limit theorems for that system. With these theorems we can obtain accurate approximations for system reliabilities when the system is large and component reliabilities are close to one. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

6.
In this paper an inventory model with several demand classes, prioritised according to importance, is analysed. We consider a lot‐for‐lot or (S ? 1, S) inventory model with lost sales. For each demand class there is a critical stock level at and below which demand from that class is not satisfied from stock on hand. In this way stock is retained to meet demand from higher priority demand classes. A set of such critical levels determines the stocking policy. For Poisson demand and a generally distributed lead time, we derive expressions for the service levels for each demand class and the average total cost per unit time. Efficient solution methods for obtaining optimal policies, with and without service level constraints, are presented. Numerical experiments in which the solution methods are tested demonstrate that significant cost reductions can be achieved by distinguishing between demand classes. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 593–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10032  相似文献   

7.
Measuring the relative importance of components in a mechanical system is useful for various purposes. In this article, we study Birnbaum and Barlow‐Proschan importance measures for two frequently studied system designs: linear consecutive k ‐out‐of‐ n and m ‐consecutive‐ k ‐out‐of‐ n systems. We obtain explicit expressions for the component importance measures for systems consisting of exchangeable components. We illustrate the results for a system whose components have a Lomax type lifetime distribution. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

8.
In a recent paper, Teng, Chern, and Yang consider four possible inventory replenishment models and determine the optimal replenishment policies for them. They compare these models to identify the best alternative on the basis of minimum total relevant inventory costs. The total cost functions for Model 1 and Model 4 as derived by them are not exact for the comparison. As a result, their conclusion on the least expensive replenishment policy is incorrect. The present article provides the actual total costs for Model 1 and Model 4 to make a correct comparison of the four models. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 602–606, 2000  相似文献   

9.
The opportunistic maintenance of a k‐out‐of‐n:G system with imperfect preventive maintenance (PM) is studied in this paper, where partial failure is allowed. In many applications, the optimal maintenance actions for one component often depend on the states of the other components and system reliability requirements. Two new (τ, T) opportunistic maintenance models with the consideration of reliability requirements are proposed. In these two models, only minimal repairs are performed on failed components before time τ and the corrective maintenance (CM) of all failed components are combined with PM of all functioning but deteriorated components after τ; if the system survives to time T without perfect maintenance, it will be subject to PM at time T. Considering maintenance time, asymptotic system cost rate and availability are derived. The results obtained generalize and unify some previous research in this area. Application to aircraft engine maintenance is presented. © 2000 John Wiley & Sons;, Inc. Naval Research Logistics 47: 223–239, 2000  相似文献   

10.
Concavity Cuts play an important role in concave minimization. In Porembski, J Global Optim 15 ( 17 ), 371–404 we extended the concept underlying concavity cuts which led to the development of decomposition cuts. In numerical experiments with pure cutting plane algorithms for concave minimization, decomposition cuts have been shown to be superior to concavity cuts. However, three points remained open. First, how to derive decomposition cuts in the degenerate case. Second, how to ensure dominance of decomposition cuts over concavity cuts. Third, how to ensure the finite convergence of a pure cutting plane algorithm solely by decomposition cuts. These points will be addressed in this paper. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

11.
We present a service constrained (Q, r) model that minimizes expected holding and ordering costs subject to an upper bound on the expected waiting time of demands that are actually backordered. We show that, after optimizing over r, the average cost is quasiconvex in Q for logconcave continuous lead time demand distributions. For logconcave discrete lead time demand distributions we find a single‐pass efficient algorithm based on a novel search stopping criterion. The algorithm also allows for bounds on the variability of the service measure. A brief numerical study indicates how the bounds on service impact the optimal average cost and the optimal (Q, r) choice. The discrete case algorithm can be readily adapted to provide a single pass algorithm for the traditional model that bounds the expected waiting time of all demands (backordered or not). © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 557–573, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10028  相似文献   

12.
Consider a distribution system with a central warehouse and multiple retailers. Customer demand arrives at each of the retailers continuously at a constant rate. The retailers replenish their inventories from the warehouse which in turn orders from an outside supplier with unlimited stock. There are economies of scale in replenishing the inventories at both the warehouse and the retail level. Stockouts at the retailers are backlogged. The system incurs holding and backorder costs. The objective is to minimize the long‐run average total cost in the system. This paper studies the cost effectiveness of (R, Q) policies in the above system. Under an (R, Q) policy, each facility orders a fixed quantity Q from its supplier every time its inventory position reaches a reorder point R. It is shown that (R, Q) policies are at least 76% effective. Numerical examples are provided to further illustrate the cost effectiveness of (R, Q) policies. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 422–439, 2000  相似文献   

13.
For computing an optimal (Q, R) or kindred inventory policy, the current literature provides mixed signals on whether or when it is safe to approximate a nonnormal lead‐time‐demand (“LTD”) distribution by a normal distribution. The first part of this paper examines this literature critically to justify why the issue warrants further investigations, while the second part presents reliable evidence showing that the system‐cost penalty for using the normal approximation can be quite serious even when the LTD‐distribution's coefficient of variation is quite low—contrary to the prevalent view of the literature. We also identify situations that will most likely lead to large system‐cost penalty. Our results indicate that, given today's technology, it is worthwhile to estimate an LTD‐distribution's shape more accurately and to compute optimal inventory policies using statistical distributions that more accurately reflect the LTD‐distributions' actual shapes. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

14.
An inventory of physical goods or storage space (in a communications system buffer, for instance) often experiences “all or nothing” demand: if a demand of random size D can be immediately and entirely filled from stock it is satisfied, but otherwise it vanishes. Probabilistic properties of the resulting inventory level are discussed analytically, both for the single buffer and for multiple buffer problems. Numerical results are presented.  相似文献   

15.
If the probability of “failure” in a multivariate renewal process of the “success run” type is very small, then if certain conditions are imposed on the components of the renewals, the joint distribution of their total durations is approximately exponential with all mass along one line. This result is applied to a 2-i.i.d. unit repairable system of the “1 out of 2:G, Cold Standby” type.  相似文献   

16.
Consider a repeated newsvendor problem for managing the inventory of perishable products. When the parameter of the demand distribution is unknown, it has been shown that the traditional separated estimation and optimization (SEO) approach could lead to suboptimality. To address this issue, an integrated approach called operational statistics (OS) was developed by Chu et al., Oper Res Lett 36 (2008) 110–116. In this note, we first study the properties of this approach and compare its performance with that of the traditional SEO approach. It is shown that OS is consistent and superior to SEO. The benefit of using OS is larger when the demand variability is higher. We then generalize OS to the risk‐averse case under the conditional value‐at‐risk (CVaR) criterion. To model risk from both demand sampling and future demand uncertainty, we introduce a new criterion, called the total CVaR, and find the optimal OS under this new criterion. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 206–214, 2015  相似文献   

17.
A 2‐dimensional rectangular (cylindrical) k‐within‐consecutive‐r × s‐out‐of‐m × n:F system is the rectangular (cylindrical) m × n‐system if the system fails whenever k components in a r × s‐submatrix fail. This paper proposes a recursive algorithm for the reliability of the 2‐dimensional k‐within‐consecutive‐r × s‐out‐m × n:F system, in the rectangular case and the cylindrical case. This algorithm requires min ( O (mkr(n?s)), O (nks(m?r))), and O (mkrn) computing time in the rectangular case and the cylindrical case, respectively. The proposed algorithm will be demonstrated and some numerical examples will be shown. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 625–637, 2001.  相似文献   

18.
A classical and important problem in stochastic inventory theory is to determine the order quantity (Q) and the reorder level (r) to minimize inventory holding and backorder costs subject to a service constraint that the fill rate, i.e., the fraction of demand satisfied by inventory in stock, is at least equal to a desired value. This problem is often hard to solve because the fill rate constraint is not convex in (Q, r) unless additional assumptions are made about the distribution of demand during the lead‐time. As a consequence, there are no known algorithms, other than exhaustive search, that are available for solving this problem in its full generality. Our paper derives the first known bounds to the fill‐rate constrained (Q, r) inventory problem. We derive upper and lower bounds for the optimal values of the order quantity and the reorder level for this problem that are independent of the distribution of demand during the lead time and its variance. We show that the classical economic order quantity is a lower bound on the optimal ordering quantity. We present an efficient solution procedure that exploits these bounds and has a guaranteed bound on the error. When the Lagrangian of the fill rate constraint is convex or when the fill rate constraint does not exist, our bounds can be used to enhance the efficiency of existing algorithms. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 635–656, 2000  相似文献   

19.
An R out of N repairable system consisting of N components and operates if at least R components are functioning. Repairable means that failed components are repaired, and upon repair completion they are as good as new. We derive formulas for the expected up‐time, expected down‐time, and the availability of the system, using Markov renewal processes. We assume that either the repair times of the components are generally distributed and the components' lifetimes are exponential or vice versa. The analysis is done for systems with either cold or warm stand‐by. Numerical examples are given for several life time and repair time distributions. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 483–498, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10025  相似文献   

20.
In this paper we present several 1‐median formulations on a tree network which incorporate dynamic evolution and/or uncertainty of node demands and transportation costs over a planning horizon. Dynamic evolution is modeled using linear demand functions for the nodes and linear length functions for the edges. Uncertainty is modeled with the use of multiple scenarios, where a scenario is a complete specification of the uncertain node demands and/or edge lengths. We formulate our objective using minimax regret like criteria. We use two different criteria, namely, robust deviation and relative robustness. We discuss what motivated the introduction of these objectives, as well as their relation to existing literature and decision making practices. For all of the models presented, we provide low‐order polynomial time algorithms. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 147–168, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号