首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we study a class of new scheduling models where time slot costs have to be taken into consideration. In such models, processing a job will incur certain cost which is determined by the time slots occupied by the job in a schedule. The models apply when operational costs vary over time. The objective of the scheduling models is to minimize the total time slot costs plus a traditional scheduling performance measure. We consider the following performance measures: total completion time, maximum lateness/tardiness, total weighted number of tardy jobs, and total tardiness. We prove the intractability of the models under general parameters and provide polynomial‐time algorithms for special cases with non‐increasing time slot costs.© 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

2.
We study two‐agent scheduling on a single sequential and compatible batching machine in which jobs in each batch are processed sequentially and compatibility means that jobs of distinct agents can be processed in a common batch. A fixed setup time is required before each batch is started. Each agent seeks to optimize some scheduling criterion that depends on the completion times of its own jobs only. We consider several scheduling problems arising from different combinations of some regular scheduling criteria, including the maximum cost (embracing lateness and makespan as its special cases), the total completion time, and the (weighted) number of tardy jobs. Our goal is to find an optimal schedule that minimizes the objective value of one agent, subject to an upper bound on the objective value of the other agent. For each problem under consideration, we provide either a polynomial‐time or a pseudo‐polynomial‐time algorithm to solve it. We also devise a fully polynomial‐time approximation scheme when both agents’ scheduling criteria are the weighted number of tardy jobs.  相似文献   

3.
We consider problem of scheduling jobs on‐line on batch processing machines with dynamic job arrivals to minimize makespan. A batch machine can handle up to B jobs simultaneously. The jobs that are processed together from a batch, and all jobs in a batch start and complete at the same time. The processing time of a batch is given by the longest processing time of any job in the batch. Each job becomes available at its arrival time, which is unknown in advance, and its processing time becomes known upon its arrival. In the first part of this paper, we address the single batch processing machine scheduling problem. First we deal with two variants: the unbounded model where B is sufficiently large and the bounded model where jobs have two distinct arrival times. For both variants, we provide on‐line algorithms with worst‐case ratio (the inverse of the Golden ratio) and prove that these results are the best possible. Furthermore, we generalize our algorithms to the general case and show a worst‐case ratio of 2. We then consider the unbounded case for parallel batch processing machine scheduling. Lower bound are given, and two on‐line algorithms are presented. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 241–258, 2001  相似文献   

4.
In many practical manufacturing environments, jobs to be processed can be divided into different families such that a setup is required whenever there is a switch from processing a job of one family to another job of a different family. The time for setup could be sequence independent or sequence dependent. We consider two particular scheduling problems relevant to such situations. In both problems, we are given a set of jobs to be processed on a set of identical parallel machines. The objective of the first problem is to minimize total weighted completion time of jobs, and that of the second problem is to minimize weighted number of tardy jobs. We propose column generation based branch and bound exact solution algorithms for the problems. Computational experiments show that the algorithms are capable of solving both problems of medium size to optimality within reasonable computational time. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 823–840, 2003.  相似文献   

5.
In this paper we consider a practical scheduling problem commonly arising from batch production in a flexible manufacturing environment. Different part‐types are to be produced in a flexible manufacturing cell organized into a two‐stage production line. The jobs are processed in batches on the first machine, and the completion time of a job is defined as the completion time of the batch containing it. When processing of all jobs in a batch is completed on the first machine, the whole batch of jobs is transferred intact to the second machine. A constant setup time is incurred whenever a batch is formed on any machine. The tradeoff between the setup times and batch processing times gives rise to the batch composition decision. The problem is to find the optimal batch composition and the optimal schedule of the batches so that the makespan is minimized. The problem is shown to be strongly NP‐hard. We identify some special cases by introducing their corresponding solution methods. Heuristic algorithms are also proposed to derive approximate solutions. We conduct computational experiments to study the effectiveness of the proposed heuristics. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 128–144, 2000  相似文献   

6.
We investigate a single‐machine scheduling problem for which both the job processing times and due windows are decision variables to be determined by the decision maker. The job processing times are controllable as a linear or convex function of the amount of a common continuously divisible resource allocated to the jobs, where the resource allocated to the jobs can be used in discrete or continuous quantities. We use the common flow allowances due window assignment method to assign due windows to the jobs. We consider two performance criteria: (i) the total weighted number of early and tardy jobs plus the weighted due window assignment cost, and (ii) the resource consumption cost. For each resource consumption function, the objective is to minimize the first criterion, while keeping the value of the second criterion no greater than a given limit. We analyze the computational complexity, devise pseudo‐polynomial dynamic programming solution algorithms, and provide fully polynomial‐time approximation schemes and an enhanced volume algorithm to find high‐quality solutions quickly for the considered problems. We conduct extensive numerical studies to assess the performance of the algorithms. The computational results show that the proposed algorithms are very efficient in finding optimal or near‐optimal solutions. © 2017 Wiley Periodicals, Inc. Naval Research Logistics, 64: 41–63, 2017  相似文献   

7.
In many practical situations of production scheduling, it is either necessary or recommended to group a large number of jobs into a relatively small number of batches. A decision needs to be made regarding both the batching (i.e., determining the number and the size of the batches) and the sequencing (of batches and of jobs within batches). A setup cost is incurred whenever a batch begins processing on a given machine. This paper focuses on batch scheduling of identical processing‐time jobs, and machine‐ and sequence‐independent setup times on an m‐machine flow‐shop. The objective is to find an allocation to batches and their schedule in order to minimize flow‐time. We introduce a surprising and nonintuitive solution for the problem. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

8.
We consider the problem of scheduling orders on identical machines in parallel. Each order consists of one or more individual jobs. A job that belongs to an order can be processed by any one of the machines. Multiple machines can process the jobs of an order concurrently. No setup is required if a machine switches over from one job to another. Each order is released at time zero and has a positive weight. Preemptions are not allowed. The completion time of an order is the time at which all jobs of that order have been completed. The objective is to minimize the total weighted completion time of the orders. The problem is NP‐hard for any fixed number (≥2) of machines. Because of this, we focus our attention on two classes of heuristics, which we refer to as sequential two‐phase heuristics and dynamic two‐phase heuristics. We perform a worst case analysis as well as an empirical analysis of nine heuristics. Our analyses enable us to rank these heuristics according to their effectiveness, taking solution quality as well as running time into account. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

9.
We consider server scheduling on parallel dedicated machines to minimize the makespan. Each job has a loading operation and a processing operation. The loading operation requires a server that serves all the jobs. Each machine has a given set of jobs to process, and the processing sequence is known and fixed. We design a polynomial‐time algorithm to solve the two‐machine case of the problem. When the number of machines is arbitrary, the problem becomes strongly NP‐hard even if all the jobs have the same processing length or all the loading operations require a unit time. We design two heuristic algorithms to treat the case where all the loading times are unit and analyze their performance.  相似文献   

10.
We consider the problem of scheduling a set of jobs on a single machine subject to random breakdowns. We focus on the preemptive‐repeat model, which addresses the situation where, if a machine breaks down during the processing of a job, the work done on the job prior to the breakdown is lost and the job will have to be started from the beginning again when the machine resumes its work. We allow that (i) the uptimes and downtimes of the machine follow general probability distributions, (ii) the breakdown process of the machine depends upon the job being processed, (iii) the processing times of the jobs are random variables following arbitrary distributions, and (iv) after a breakdown, the processing time of a job may either remain a same but unknown amount, or be resampled according to its probability distribution. We first derive the optimal policy for a class of problems under the criterion to maximize the expected discounted reward earned from completing all jobs. The result is then applied to further obtain the optimal policies for other due date‐related criteria. We also discuss a method to compute the moments and probability distributions of job completion times by using their Laplace transforms, which can convert a general stochastic scheduling problem to its deterministic equivalent. The weighted squared flowtime problem and the maintenance checkup and repair problem are analyzed as applications. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

11.
We consider sequencing n jobs on a single machine subject to job completion times arising from either machine breakdowns or other causes. The objective is to minimize an expected weighted combination of due dates, completion times, earliness, and tardiness penalties. The determination of optimal distinct due dates or optimal common due dates for a given schedule is investigated. The scheduling problem for a fixed common due date is considered when random completion times arise from machine breakdowns. The optimality of a V-shaped about (a point) T sequence is established when the number of machine breakdowns follows either a Poisson or a geometric distribution and the duration of a breakdown has an exponential distribution. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
We consider scheduling a set of jobs with deadlines to minimize the total weighted late work on a single machine, where the late work of a job is the amount of processing of the job that is scheduled after its due date and before its deadline. This is the first study on scheduling with the late work criterion under the deadline restriction. In this paper, we show that (i) the problem is unary NP‐hard even if all the jobs have a unit weight, (ii) the problem is binary NP‐hard and admits a pseudo‐polynomial‐time algorithm and a fully polynomial‐time approximation scheme if all the jobs have a common due date, and (iii) some special cases of the problem are polynomially solvable.  相似文献   

13.
Both topics of batch scheduling and of scheduling deteriorating jobs have been very popular among researchers in the last two decades. In this article, we study a model combining these two topics. We consider a classical batch scheduling model with unit‐jobs and batch‐independent setup times, and a model of step‐deterioration of processing times. The objective function is minimum flowtime. The optimal solution of the relaxed version (allowing non‐integer batch sizes) is shown to have a unique structure consisting of two consecutive decreasing arithmetic sequences of batch sizes. We also introduce a simple and efficient rounding procedure that guarantees integer batch sizes. The entire solution procedure requires an effort of O(n) (where nis the number of jobs.) © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

14.
We consider the problem of scheduling n independent and simultaneously available jobs without preemption on a single machine, where the machine has a fixed maintenance activity. The objective is to find the optimal job sequence to minimize the total amount of late work, where the late work of a job is the amount of processing of the job that is performed after its due date. We first discuss the approximability of the problem. We then develop two pseudo‐polynomial dynamic programming algorithms and a fully polynomial‐time approximation scheme for the problem. Finally, we conduct extensive numerical studies to evaluate the performance of the proposed algorithms. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 172–183, 2016  相似文献   

15.
We consider the multitasking scheduling problem on unrelated parallel machines to minimize the total weighted completion time. In this problem, each machine processes a set of jobs, while the processing of a selected job on a machine may be interrupted by other available jobs scheduled on the same machine but unfinished. To solve this problem, we propose an exact branch‐and‐price algorithm, where the master problem at each search node is solved by a novel column generation scheme, called in‐out column generation, to maintain the stability of the dual variables. We use a greedy heuristic to obtain a set of initial columns to start the in‐out column generation, and a hybrid strategy combining a genetic algorithm and an exact dynamic programming algorithm to solve the pricing subproblems approximately and exactly, respectively. Using randomly generated data, we conduct numerical studies to evaluate the performance of the proposed solution approach. We also examine the effects of multitasking on the scheduling outcomes, with which the decision maker can justify making investments to adopt or avoid multitasking.  相似文献   

16.
This article considers batch scheduling with centralized and decentralized decisions. The context of our study is concurrent open shop scheduling where the jobs are to be processed on a set of independent dedicated machines, which process designated operations of the jobs in batches. The batching policy across the machines can be centralized or decentralized. We study such scheduling problems with the objectives of minimizing the maximum lateness, weighted number of tardy jobs, and total weighted completion time, when the job sequence is determined in advance. We present polynomial time dynamic programming algorithms for some cases of these problems and pseudo‐polynomial time algorithms for some problems that are NP‐hard in the ordinary sense. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 58: 17–27, 2011  相似文献   

17.
We consider the problem of scheduling customer orders on a single facility where each order consists of several jobs that can be clustered into several groups. When a facility is changed over to another group, a setup time associated with the new group is required. Two particular problems are considered in this context. One is to consider the total setup time and the number of tardy orders jointly. The other is to consider the total setup time and the maximum tardiness jointly. The total setup time in both problems represents a measure of internal efficiency, whereas the number of tardy orders and the maximum tardiness represent a measure of external efficiency. In any shop, the decision maker must consider the tradeoffs between large setup costs associated with a more frequent changeover schedule versus the cost of tardy orders that might be induced by a less-frequent changeover schedule. In this article branch-and-bound algorithms are proposed to identify the set of nondominated schedules for the two bicriteria problems. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
The majority of scheduling literature assumes that the machines are available at all times. In this paper, we study single machine scheduling problems where the machine maintenance must be performed within certain intervals and hence the machine is not available during the maintenance periods. We also assume that if a job is not processed to completion before the machine is stopped for maintenance, an additional setup is necessary when the processing is resumed. Our purpose is to schedule the maintenance and jobs to minimize some performance measures. The objective functions that we consider are minimizing the total weighted job completion times and minimizing the maximum lateness. In both cases, maintenance must be performed within a fixed period T, and the time for the maintenance is a decision variable. In this paper, we study two scenarios concerning the planning horizon. First, we show that, when the planning horizon is long in relation to T, the problem with either objective function is NP-complete, and we present pseudopolynomial time dynamic programming algorithms for both objective functions. In the second scenario, the planning horizon is short in relation to T. However, part of the period T may have elapsed before we schedule any jobs in this planning horizon, and the remaining time before the maintenance is shorter than the current planning horizon. Hence we must schedule one maintenance in this planning horizon. We show that the problem of minimizing the total weighted completion times in this scenario is NP-complete, while the shortest processing time (SPT) rule and the earliest due date (EDD) rule are optimal for the total completion time problem and the maximum lateness problem respectively. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 845–863, 1999  相似文献   

19.
The problem of minimum makespan on an m machine jobshop with unit execution time (UET) jobs (m ≥ 3) is known to be strongly NP‐hard even with no setup times. We focus in this article on the two‐machine case. We assume UET jobs and consider batching with batch availability and machine‐dependent setup times. We introduce an efficient \begin{align*}(O(\sqrt{n}))\end{align*} algorithm, where n is the number of jobs. We then introduce a heuristic for the multimachine case and demonstrate its efficiency for two interesting instances. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

20.
We consider the problem of scheduling a set of jobs on a single machine where the release time of a job is related to the amount of resource consumed. The objective is to minimize the total resource consumption with a control on the completion times of the jobs. Four different variants of the problem are studied: (i) minimization of the total resource consumption subject to a common deadline for all jobs, (ii) minimization of the total resource consumption subject to a constraint on the total completion time of the jobs, (iii) minimization of the weighted total resource consumption and maximum job completion time, and (iv) minimization of the weighted total resource consumption and the total job completion time. We compare the common resource consumption function with the function where the resource consumed is proportional to the processing time of the job. We show that these two different resource consumption functions can give rise to very different solution methods and different computational complexities for the problem. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号