首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 984 毫秒
1.
水下航行器不同燃料燃烧性能的仿真研究   总被引:1,自引:0,他引:1  
为了解热动力水下航行器不同燃料的燃烧性能,利用FLUENT软件,分别对OTTO-Ⅱ单组元燃料和HAP+OTTO-Ⅱ+H2O的三组元燃料在旋转燃烧室内的两相湍流燃烧进行了数值仿真.湍流计算采用标准模型κ-ε、气相燃烧采用ED模型、液相采用离散液滴模型.得到两种燃料在燃烧室内的温度分布,化学反应速率分布、燃烧产物CO2和CO的质量分数分布以及两种燃料液滴的运动轨迹,并对计算结果进行了比较和分析.结果表明,三组元燃料的燃烧性能要优于单组元燃料的燃烧性能,但由于三组元液滴蒸发较慢,对燃烧稳定性造成影响.  相似文献   

2.
以某型内燃机为研究对象,对内燃机燃烧室结构进行了改进性设计,以提高金属/水反应燃料的燃烧效率和动力输出为目的,在建立燃烧反应动力学模型的基础上,利用Fluent仿真软件,采用SIMPLE算法对燃烧室进行了2维流场模拟仿真。仿真计算结果表明:金属/水反应燃料的最高燃烧压力可达到1 000 MPa,1 kg燃烧产物中只有7.197 3e-3g氧化氮产物,燃烧速度最高可达7.5e4m/s,说明在改进燃烧室结构后,金属/水反应燃料的燃烧效率和内燃机性能都得到了显著提高。  相似文献   

3.
以基于N2O/C7H8的燃烧驱动混合型气动CO2激光器点火试验为研究背景,设计了液态N2O供应系统及N2O/C7H8单喷嘴燃气发生器.对液态N2O供应系统、N2O/C7H8的点火及燃烧性能进行了研究.试验结果表明:设计的N2O供应系统能够实现液态N2O的稳定供应;在设定的时序下,两个设计工况(余氧系数分别为0.3和0....  相似文献   

4.
H2O2/HTPB固液混合发动机点火试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用H2O2催化分解原理,设计了烃类燃料在催化分解的90%H2O2中能燃烧的点火器,然后采用该点火器进行H2O2/HTPB固液混合发动机点火试验研究.试验结果表明,该点火器能够成功启动H2O2/HTPB固液混合发动机,且当混合比偏离最佳混合比后,发动机的燃烧效率降低.  相似文献   

5.
本文详细分析了自燃推进剂组元液滴在高温高压燃烧室环境下的蒸发——分解燃烧过程,提出了该种液滴的高压平衡蒸发计算模型.模型考虑了液滴界面移动、非理想气体效应、流体物性的变化以及组元的分解和离解效应.应用本模型计算了UDMH和N2O4液滴在不同介质压力、温度和对流强度下的平衡蒸发常数.计算表明,存在一个介质界限压力,超过这一压力就达到超临界蒸发.对于UDMH,当T_∞=3200°K,Le=1.0时,界限压力P_∞=54大气压,而对于N2O4,P_∞=120大气压.计算还表明,UDMH的蒸发速度远大于N_2O_4的蒸发速度.因而可以得出结论,在一般液体火箭发动机的工作条件下,UDMH为超临界蒸发,而N2O_4为亚临界蒸发,而且发动机的燃烧效率主要受N_2O_4的蒸发速度所控制.这一结论已为发动机试车所证实.  相似文献   

6.
为探究超燃冲压发动机燃烧室中煤油燃料燃烧的化学动力学过程,综合采用敏感性分析方法与路径分析方法,针对RP-3航空煤油三组分替代燃料的详细反应模型进行简化,建立一种适用于超声速燃烧流场数值模拟的新型26组分89反应简化燃烧反应模型。采用该简化燃烧模型对RP-3航空煤油替代燃料的点火、燃烧特性进行数值模拟,并与详细反应模型结果和试验数据进行对比校验。此外,将该简化燃烧模型与超声速燃烧流场计算方法相结合,数值分析了典型超燃冲压发动机燃烧室流场内化学动力学特性。研究结果表明:新型简化燃烧反应模型在不影响数值模拟精度的前提下,有效减少了反应组分与反应方程个数,提高了超声速复杂燃烧流场的数值模拟效率,并且能够准确获得烯烃、炔烃等重要中间燃烧产物以及小分子活性基团的空间分布规律,给出更全面的流场信息。  相似文献   

7.
采用Fluent 6.3软件对微细尺度下液体乙醇层流扩散燃烧过程进行了数值模拟,同时借用实验方法对其可靠性进行了验证.结果表明:实验获得的火焰结构与数值模拟温度图高温区结构相似,而且火焰结构尺寸比数值模拟要低,数值模拟值与实验计算值吻合良好;H/d与Re呈线性增加,有外加电场的斜率较无电场大,正向电场的H/d比反向电场...  相似文献   

8.
提出水下航行器燃烧室中两相流燃烧数值模拟方法.采用k-ε双方程湍流模型、涡耗散燃烧模型、离散相液滴模型进行数值模拟,得到单组元推进剂燃烧的速度场、温度场、浓度场的分布.研究了喷嘴压差、环境背压对燃烧的影响,得出了一定范围内,增大喷嘴压差、增大环境背压可以增强燃烧效果的结论.  相似文献   

9.
使用数值模拟方法对比分析了环型通道与齿轮型通道两种内旁路构型的燃烧性能,固体燃料为丁羟,燃烧采用总包反应,反应速率由涡团耗散模型计算.研究发现,环型通道在补燃室头部产生突扩回流区,仍为扩散燃烧;齿轮型通道在补燃室头部产生对称的涡结构,能够增强未燃烧燃料与旁路空气的掺混效果,且总压损失与环型相当,综合燃烧性能较好.  相似文献   

10.
为加深对低浓度乙醇燃气发生器燃烧过程化学动力学过程的理解,分析水组分在燃烧过程中所起的作用,利用对冲扩散火焰模型对不同浓度下的火焰结构进行了数值分析,并虚拟了一种惰性水组分以区分物理机制和化学机制对燃烧过程产生的影响.研究结果显示,随着乙醇浓度的不断降低,火焰锋面呈现出向燃料侧的整体移动趋势;随着浓度向极限浓度的趋近,...  相似文献   

11.
一种新型的计算化学非平衡流动的解耦方法   总被引:12,自引:0,他引:12       下载免费PDF全文
给出一种计算化学非平衡流动的解耦方法。利用该方法从薄层近似N S方程出发 ,采用NND2M差分格式 ,数值模拟了H2 /O2 燃烧的超音速绕流场 ;计算表明这种方法可以有效地解决刚性问题 ,而且与现有的隐式算法相比 ,具有公式推导简便 ,占用内存少 ,计算效率高等优点 ,特别适合于多组分和多反应的情况  相似文献   

12.
铂族金属催化剂CO氧化过程呈现较为复杂的本质非线性属性,如反应速率突变、双稳定性和迟滞,这些本质非线性属性取决于化学反应内在的稳定性和自组织机制,所产生的一个外在结果是CO氧化反应速率与控制参数之间呈现出路径依赖的输入输出关系。对这类系统采用传统的线性控制方法具有固有的不稳定机制,可以导致化学反应速率的震荡以及控制系统的失稳;而采用常规非线性切换控制则面临在切换初始时刻所具有的大干扰问题,较大地影响控制系统的动态性能甚至稳定性。针对研究所面临的这种大干扰问题,提出基于积分初值重置的平滑切换控制方法予以解决。结果表明,所提出的方法能够从原理上解决CO氧化反应控制过程的平滑切换问题,较好地提高控制系统的动态性能。  相似文献   

13.
水下制氢反应室动态过程数值分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究水下制氢反应室的动态过程规律,基于化学反应动力学和单液滴运动学得到合金/水反应转化率,并在最小自由能法计算得到生成物各组分摩尔数的基础上利用质量守恒方程得到室内各物质质量变化规律。在建立非线性移动边界螺旋管动态模型的前提下,利用能量守恒方程得到室内热力参数变化规律,进而完成制氢反应室动态过程详尽模型的建立。利用该模型编写计算程序,完成某水下制氢反应室动态过程仿真。结果表明,各仿真曲线较好地反映了对应参数的动态变化规律,验证了模型建立与仿真的正确性;合金/水反应转化率决定了反应室的物质质量变化规律及其能量释放特性。该模型可以作为制氢反应室动态特性分析及其过程控制研究的基础模型。  相似文献   

14.
The effects of magnesium/polytetrafluoroethylene (Mg/PTFE) pyrotechnic compositions on the coupled flow field and reignition mechanism are important aspects governing the performance and range of base bleed projectiles (BBPs).Owing to a decrease in pressure and temperature when the BBP leaves the muzzle,rapid depressurization occurs,which extinguishes the base bleed propellant.The Mg/PTFE py-rotechnic composition pressed in the igniter of the base bleed unit (BBU) provides additional energy to the BBU via a chemical reaction.Thus,the extinguished base bleed propellant is reignited under the effect of high-temperature combustion gas jets from the igniter.In this study,a numerical analysis is conducted to evaluate the effects of PTFE and Mg granularity as well as Mg/PTFE pyrotechnic compo-sitions.Owing to the rapid depressurization,the temperature and pressure was found to decrease for different Mg/PTFE pyrotechnic compositions.However,the depressurization time increased as the PTFE granularity increased,the Mg granularity decreased,and the Mg content increased.When the pressure in the combustion chamber of the BBU decreased to the atmospheric pressure,the combustion gas jets from the igniter expand upstream (rather than downstream).However,these combustion gas jets exhibit different axial and radial expansion characteristics depending on the pyrotechnic compositions used.The results show that the reignition delay time,td,of the base bleed propellant was 377.608,94.27,387.243,523.966,and 221.094 ms for cases A-E,respectively.Therefore,it was concluded that the Mg/PTFE pyrotechnic composition of case B was the most beneficial for the reignition of the base bleed propellant,with the earliest addition of energy and mass to the BBP.  相似文献   

15.
狭长密闭空间油气爆炸燃烧数值研究   总被引:2,自引:0,他引:2  
基于不同控制机理制约不同反应步骤的分步反应燃烧机理,建立了RNG k-ε湍流模型和层流有限速率/涡耗散燃烧模型直接耦合的燃烧模型,采用TVD有限体积法,对充满等体积油气预混气的狭长密闭空间油气爆炸燃烧发生与发展过程进行了数值模拟.为了验证模型的正确性,根据计算结果分析了爆炸流场出现的火焰、压力波和化学反应等特征.所得计...  相似文献   

16.
选择AZ91D镁合金为实验材料,利用扫描电镜和能谱分析、Tafel曲线和阻抗谱等分析手段,研究了H2O2的添加量对铈转化膜的微观形貌以及耐蚀性能的影响。结果表明:随H2O2添加量的增多,转化膜表面状态越不均匀,自腐蚀电位降低,转化膜电阻Rf变小,较为合适的H2O2添加量为5 mL/L。  相似文献   

17.
以二乙烯基苯和聚硅氧烷为原料经先驱体转化法制备了Si-O-C材料,利用镁金属在惰性气氛保护下高温还原制备了多孔的Si/Si-O-C负极材料。Si/Si-O-C负极材料的首次放电与充电容量分别为547.2和450.7mAh?g-1,第二次放电与充电容量分别为487.4和422.9mAh?g-1,库伦效率分别为82.3%、86.8%,材料具有较好的循环性能。利用X射线衍射(XRD)、能谱分析(EDX)、元素分析和场发射扫描电镜(FE-SEM)分析了多孔Si/Si-O-C负极材料的组成、结构、形貌,从而研究利用镁金属化学还原法制备多孔Si/Si-O-C负极材料的机理。结果表明,镁金属在还原过程中生成MgO和Mg2SiO4等产物,经HCl洗涤后可形成多孔的Si/Si-O-C负极材料。Si/Si-O-C材料中的单质硅分布于多孔的Si-O-C相中,一定程度上可缓解Si在循环过程中产生的体积效应。利用镁金属还原Si-O-C材料制备多孔Si/Si-O-C材料是一种可行的制备方法。  相似文献   

18.
冗余并联机构的PD控制   总被引:5,自引:1,他引:5       下载免费PDF全文
采用并联机构的简化树动力学模型 (reducedtreemodel) ,给出了冗余并联结构的动力学方程和基于PD控制策略的控制方法。为了消除冗余并联机构固有的内作用力 ,给出了一种基于静态力平衡的控制方法。最后 ,利用一个 2自由度的冗余平面并联机构作为控制实例 ,实验结果表明了控制方法的正确性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号