共查询到5条相似文献,搜索用时 0 毫秒
1.
The multi-armored target tracking (MATT) plays a crucial role in coordinated tracking and strike. The occlusion and insertion among targets and target scale variation is the key problems in MATT. Most state-of-the-art multi-object tracking (MOT) works adopt the tracking-by-detection strategy, which rely on compute-intensive sliding window or anchoring scheme in detection module and neglect the target scale variation in tracking module. In this work, we proposed a more efficient and effective spatial-temporal attention scheme to track multi-armored target in the ground battlefield. By simulating the structure of the retina, a novel visual-attention Gabor filter branch is proposed to enhance detection. By introducing temporal information, some online learned target-specific Convolutional Neural Networks (CNNs) are adopted to address occlusion. More importantly, we built a MOT dataset for armored targets, called Armored Target Tracking dataset (ATTD), based on which several comparable experiments with state-of-the-art methods are conducted. Experimental results show that the proposed method achieves outstanding tracking performance and meets the actual application requirements. 相似文献
3.
《防务技术》2020,16(6):1116-1129
Object detection models based on convolutional neural networks (CNN) have achieved state-of-the-art performance by heavily rely on large-scale training samples. They are insufficient when used in specific applications, such as the detection of military objects, as in these instances, a large number of samples is hard to obtain. In order to solve this problem, this paper proposes the use of Gabor-CNN for object detection based on a small number of samples. First of all, a feature extraction convolution kernel library composed of multi-shape Gabor and color Gabor is constructed, and the optimal Gabor convolution kernel group is obtained by means of training and screening, which is convolved with the input image to obtain feature information of objects with strong auxiliary function. Then, the k-means clustering algorithm is adopted to construct several different sizes of anchor boxes, which improves the quality of the regional proposals. We call this regional proposal process the Gabor-assisted Region Proposal Network (Gabor-assisted RPN). Finally, the Deeply-Utilized Feature Pyramid Network (DU-FPN) method is proposed to strengthen the feature expression of objects in the image. A bottom-up and a top-down feature pyramid is constructed in ResNet-50 and feature information of objects is deeply utilized through the transverse connection and integration of features at various scales. Experimental results show that the method proposed in this paper achieves better results than the state-of-art contrast models on data sets with small samples in terms of accuracy and recall rate, and thus has a strong application prospect. 相似文献
4.
针对模态间差异,提出基于对称网络的跨模态行人重识别算法,该网络将基于概率分布的模态混淆与对抗学习结合,通过对称网络产生模态不变特征,从而达到模态混淆的目的;针对外观差异和模态内差异,使用不同隐藏层的网络卷积特征构造混合三元损失,提高网络的特征表征能力.RegDB和SYSU-MM01数据集上的大量实验结果表明了该方法的有... 相似文献
5.
等离子体对于高功率微波的攻击具有独特的防护效果.基于等离子体流体近似方法,利用COMSOL软件研究了高功率微波与柱状等离子体阵列相互作用过程中入射电场随时间的演变过程,分析了等离子体防护高功率微波的物理过程和作用机理.研究结果表明,入射的高功率微波会使等离子体参数发生剧烈变化,特别是其电子密度将急剧增加,从而使等离子体对入射的高功率微波表现出类似金属的电磁特性,最终实现对入射高功率微波的有效防护.此外,利用高频辉光放电产生柱状等离子体阵列,通过实验验证了等离子体对高功率微波的防护作用.最后,总结了基于等离子体的高功率微波防护技术需解决的主要问题. 相似文献