首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Capacity planning decisions affect a significant portion of future revenue. In the semiconductor industry, they need to be made in the presence of both highly volatile demand and long capacity installation lead‐times. In contrast to traditional discrete‐time models, we present a continuous‐time stochastic programming model for multiple resource types and product families. We show how this approach can solve capacity planning problems of reasonable size and complexity with provable efficiency. This is achieved by an application of the divide‐and‐conquer algorithm, convexity, submodularity, and the open‐pit mining problem. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

2.
针对当前武器装备体系组合规划存在选择空间规模大、决策目标数量多等问题,提出一种集成决策优化框架,用于组合选择和规划武器装备的发展型号、时间和数量。首先对武器装备体系组合规划问题的NP-Hard和高维多目标性质进行定量化分析和公式化描述;然后采用目标规划方法将该问题构建为双目标优化模型;再基于NSGA-II多目标演化计算方法,开发面向本问题的优化算法,求得该模型的Pareto解集合;最后通过TOPSIS方法,从Pareto解集合中求取符合决策者偏好的满意解。通过某侦察预警监视体系发展规划示例,验证了当给定经验数据和决策者偏好信息后,该框架可获得符合要求的武器装备体系组合规划方案,能够支撑武器装备体系发展论证和规划。  相似文献   

3.
This paper considers a discrete time, single item production/inventory system with random period demands. Inventory levels are reviewed periodically and managed using a base‐stock policy. Replenishment orders are placed with the production system which is capacitated in the sense that there is a single server that sequentially processes the items one at a time with stochastic unit processing times. In this setting the variability in demand determines the arrival pattern of production orders at the queue, influencing supply lead times. In addition, the inventory behavior is impacted by the correlation between demand and lead times: a large demand size corresponds to a long lead time, depleting the inventory longer. The contribution of this paper is threefold. First, we present an exact procedure based on matrix‐analytic techniques for computing the replenishment lead time distribution given an arbitrary discrete demand distribution. Second, we numerically characterize the distribution of inventory levels, and various other performance measures such as fill rate, base‐stock levels and optimal safety stocks, taking the correlation between demand and lead times into account. Third, we develop an algorithm to fit the first two moments of the demand and service time distribution to a discrete phase‐type distribution with a minimal number of phases. This provides a practical tool to analyze the effect of demand variability, as measured by its coefficient of variation, on system performance. We also show that our model is more appropriate than some existing models of capacitated systems in discrete time. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

4.
We describe a periodic review inventory system where emergency orders, which have a shorter supply lead time but are subject to higher ordering cost compared to regular orders, can be placed on a continuous basis. We consider the periodic review system in which the order cycles are relatively long so that they are possibly larger than the supply lead times. Study of such systems is important since they are often found in practice. We assume that the difference between the regular and emergency supply lead times is less than the order-cycle length. We develop a dynamic programming model and derive a stopping rule to end the computation and obtain optimal operation parameters. Computational results are included that support the contention that easily implemented policies can be computed with reasonable effort. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 187–204, 1998  相似文献   

5.
Unpredictable disruptive events significantly increase the difficulty of the management of automobile supply chains. In this paper, we propose an automobile production planning problem with component chips substitution in a finite planning horizon. The shortage of one chip can be compensated by another chip of the same type with a higher-end feature at an additional cost. Therefore, the automobile manufacturer can divert the on-hand inventory of chips to product lines that are more profitable in the event of shortages caused by supply chain disruptions. To cope with this, we propose a max-min robust optimization model that captures the uncertain supplies of chips. We show that the robust model has a mixed-integer programming equivalence that can be solved by a commercial IP solver directly. We compare the max-min robust model with the corresponding deterministic and two-stage stochastic models for the same problem through extensive numerical experiments. The computational results show that the max-min robust model outperforms the other two models in terms of the average and worst-case profits.  相似文献   

6.
We present a large‐scale network design model for the outbound supply chain of an automotive company that considers transportation mode selection (road vs. rail) and explicitly models the relationship between lead times and the volume of flow through the nodes of the network. We formulate the problem as a nonlinear zero‐one integer program, reformulate it to obtain a linear integer model, and develop a Lagrangian heuristic for its solution that gives near‐optimal results in reasonable time. We also present scenario analyses that examine the behavior of the supply chain under different parameter settings and the performance of the solution procedures under different experimental conditions. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

7.
Models are formulated for determining continuous review (Q, r) policies for a multiitem inventory subject to constraints. The objective function is the minimization of total time-weighted shortages. The constraints apply to inventory investment and reorder workload. The formulations are thus independent of the normal ordering, holding, and shortage costs. Two models are presented, each representing a convex programming problem. Lagrangian techniques are employed with the first, simplified model in which only the reorder points are optimized. In the second model both the reorder points and the reorder quantities are optimized utilizing penalty function methods. An example problem is solved for each model. The final section deals with the implementation of these models in very large inventory systems.  相似文献   

8.
This paper reviews a wide variety of manpower and personnel models of the goal programming variety. This is done from a strategy-oriented point of view addressing the problems of interest for immediate implementation as well as basic problems of manpower model research development. Particular emphasis in this paper is concerned with how analytical models can be brought to bear on the problems of combining military and civilian manpower into one management system. This includes a discussion of the computer support arrangements necessary to implement the models. First, we discuss an extension of multilevel models to provide an integrated approach to program planning which includes the dynamics of the manpower requirements-inventory relationships of mixed military-civilian manpower systems. Then, focus is given to some of the potential Navy applications particularly in terms of ways the outputs from the global multilevel model might be interfaced with assignment models for operational planning. The paper concludes with a discussion of static and dynamic multiattribute assignment models which operate on the individual man-job matching level. It is at this level of detail that dynamic mixed manpower systems might be constructed for use in equal employment opportunity planning and for local organization design studies.  相似文献   

9.
Express package carrier networks have large numbers of heavily‐interconnected and tightly‐constrained resources, making the planning process difficult. A decision made in one area of the network can impact virtually any other area as well. Mathematical programming therefore seems like a logical approach to solving such problems, taking into account all of these interactions. The tight time windows and nonlinear cost functions of these systems, however, often make traditional approaches such as multicommodity flow formulations intractable. This is due to both the large number of constraints and the weakness of the linear programming (LP) relaxations arising in these formulations. To overcome these obstacles, we propose a model in which variables represent combinations of loads and their corresponding routings, rather than assigning individual loads to individual arcs in the network. In doing so, we incorporate much of the problem complexity implicitly within the variable definition, rather than explicitly within the constraints. This approach enables us to linearize the cost structure, strengthen the LP relaxation of the formulation, and drastically reduce the number of constraints. In addition, it greatly facilitates the inclusion of other stages of the (typically decomposed) planning process. We show how the use of templates, in place of traditional delayed column generation, allows us to identify promising candidate variables, ensuring high‐quality solutions in reasonable run times while also enabling the inclusion of additional operational considerations that would be difficult if not impossible to capture in a traditional approach. Computational results are presented using data from a major international package carrier. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

10.
Logistical planning problems are complicated in practice because planners have to deal with the challenges of demand planning and supply replenishment, while taking into account the issues of (i) inventory perishability and storage charges, (ii) management of backlog and/or lost sales, and (iii) cost saving opportunities due to economies of scale in order replenishment and transportation. It is therefore not surprising that many logistical planning problems are computationally difficult, and finding a good solution to these problems necessitates the development of many ad hoc algorithmic procedures to address various features of the planning problems. In this article, we identify simple conditions and structural properties associated with these logistical planning problems in which the warehouse is managed as a cross‐docking facility. Despite the nonlinear cost structures in the problems, we show that a solution that is within ε‐optimality can be obtained by solving a related piece‐wise linear concave cost multi‐commodity network flow problem. An immediate consequence of this result is that certain classes of logistical planning problems can be approximated by a factor of (1 + ε) in polynomial time. This significantly improves upon the results found in literature for these classes of problems. We also show that the piece‐wise linear concave cost network flow problem can be approximated to within a logarithmic factor via a large scale linear programming relaxation. We use polymatroidal constraints to capture the piece‐wise concavity feature of the cost functions. This gives rise to a unified and generic LP‐based approach for a large class of complicated logistical planning problems. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

11.
This article develops a mathematical model and heuristic algorithm to design recreational boating mooring fields. The boating industry is important to the Florida economy, and boat storage is becoming a concern among those in the industry. The mooring field design problem is formulated to maximize the total number of boat feet moored in the mooring field. In the model, we allow two adjacent moorings to overlap, which introduces a risk that under certain conditions the boats on these moorings could contact each other. We identify the conditions when contact is possible and quantify the probability of contact. The mooring field design problem is formulated as a nonlinear mixed‐integer programming problem. To solve the problem, we decompose it into two separate models, a mooring radii assignment model and a mooring layout model, which are solved sequentially. The first is solved via exhaustive enumeration and the second via a depth‐first search algorithm. Two actual mooring fields are evaluated, and in both cases our model leads to better layouts than ones experts developed manually. The mooring field design model rationalizes the mooring field design and shows that in one case by increasing the risk from 0 to 1%, the mooring efficiency increases from 74.8% to 96.2%. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

12.
Production planning for large-scale production systems requiring the allocation of numerous resources is considered. It is demonstrated how the dynamic activity analysis developed by Shephard leads to linear programming solutions of production planning problems. Three types of planning problems are formulated: maximization of output levels for a given time horizon; minimization of production duration for given output histories; and minimization of production costs for given output histories.  相似文献   

13.
We introduce a generalized orienteering problem (OP) where, as usual, a vehicle is routed from a prescribed start node, through a directed network, to a prescribed destination node, collecting rewards at each node visited, to maximize the total reward along the path. In our generalization, transit on arcs in the network and reward collection at nodes both consume a variable amount of the same limited resource. We exploit this resource trade‐off through a specialized branch‐and‐bound algorithm that relies on partial path relaxation problems that often yield tight bounds and lead to substantial pruning in the enumeration tree. We present the smuggler search problem (SSP) as an important real‐world application of our generalized OP. Numerical results show that our algorithm applied to the SSP outperforms standard mixed‐integer nonlinear programming solvers for moderate to large problem instances. We demonstrate model enhancements that allow practitioners to represent realistic search planning scenarios by accounting for multiple heterogeneous searchers and complex smuggler motion. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

14.
We study the problem of designing a two‐echelon spare parts inventory system consisting of a central plant and a number of service centers each serving a set of customers with stochastic demand. Processing and storage capacities at both levels of facilities are limited. The manufacturing process is modeled as a queuing system at the plant. The goal is to optimize the base‐stock levels at both echelons, the location of service centers, and the allocation of customers to centers simultaneously, subject to service constraints. A mixed integer nonlinear programming model (MINLP) is formulated to minimize the total expected cost of the system. The problem is NP‐hard and a Lagrangian heuristic is proposed. We present computational results and discuss the trade‐off between cost and service. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

15.
Previous lot-sizing models incorporating learning effects focus exclusively on worker learning. We extend these models to include the presence of setup learning, which occurs when setup costs exhibit a learning curve effect as a function of the number of lots produced. The joint worker/setup learning problem can be solved to optimality by dynamic programming. Computational experience indicates, however, that solution times are sensitive to certain problem parameters, such as the planning horizon and/or the presence of a lower bound on worker learning. We define a two-phase EOQ-based heuristic for the problem when total transmission of worker learning occurs. Numerical results show that the heuristic consistently generates solutions well within 1% of optimality.  相似文献   

16.
Models for integrated production and demand planning decisions can serve to improve a producer's ability to effectively match demand requirements with production capabilities. In contexts with price‐sensitive demands, economies of scale in production, and multiple capacity options, such integrated planning problems can quickly become complex. To address these complexities, this paper provides profit‐maximizing production planning models for determining optimal demand and internal production capacity levels under price‐sensitive deterministic demands, with subcontracting and overtime options. The models determine a producer's optimal price, production, inventory, subcontracting, overtime, and internal capacity levels, while accounting for production economies of scale and capacity costs through concave cost functions. We use polyhedral properties and dynamic programming techniques to provide polynomial‐time solution approaches for obtaining an optimal solution for this class of problems when the internal capacity level is time‐invariant. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

17.
This paper considers the production of two products with known demands over a finite set of periods. The production and inventory carrying costs for each product are assumed to be concave. We seek the minimum cost production schedule meeting all demands, without backlogging, assuming that at most one of the two products can be produced in any period. The optimization problem is first stated as a nonlinear programming problem, which allows the proof of a result permitting the search for the optimal policy to be restricted to those which produce a product only when its inventory level is zero. A dynamic programming formulation is given and the model is then formulated as a shortest route problem in a specially constructed network.  相似文献   

18.
There has been a dramatic increase over the past decade in the number of firms that source finished product from overseas. Although this has reduced procurement costs, it has increased supply risk; procurement lead times are longer and are often unreliable. In deciding when and how much to order, firms must consider the lead time risk and the demand risk, i.e., the accuracy of their demand forecast. To improve the accuracy of its demand forecast, a firm may update its forecast as the selling season approaches. In this article we consider both forecast updating and lead time uncertainty. We characterize the firm's optimal procurement policy, and we prove that, with multiplicative forecast revisions, the firm's optimal procurement time is independent of the demand forecast evolution but that the optimal procurement quantity is not. This leads to a number of important managerial insights into the firm's planning process. We show that the firm becomes less sensitive to lead time variability as the forecast updating process becomes more efficient. Interestingly, a forecast‐updating firm might procure earlier than a firm with no forecast updating. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

19.
We develop a risk‐sensitive strategic facility sizing model that makes use of readily obtainable data and addresses both capacity and responsiveness considerations. We focus on facilities whose original size cannot be adjusted over time and limits the total production equipment they can hold, which is added sequentially during a finite planning horizon. The model is parsimonious by design for compatibility with the nature of available data during early planning stages. We model demand via a univariate random variable with arbitrary forecast profiles for equipment expansion, and assume the supporting equipment additions are continuous and decided ex‐post. Under constant absolute risk aversion, operating profits are the closed‐form solution to a nontrivial linear program, thus characterizing the sizing decision via a single first‐order condition. This solution has several desired features, including the optimal facility size being eventually decreasing in forecast uncertainty and decreasing in risk aversion, as well as being generally robust to demand forecast uncertainty and cost errors. We provide structural results and show that ignoring risk considerations can lead to poor facility sizing decisions that deteriorate with increased forecast uncertainty. Existing models ignore risk considerations and assume the facility size can be adjusted over time, effectively shortening the planning horizon. Our main contribution is in addressing the problem that arises when that assumption is relaxed and, as a result, risk sensitivity and the challenges introduced by longer planning horizons and higher uncertainty must be considered. Finally, we derive accurate spreadsheet‐implementable approximations to the optimal solution, which make this model a practical capacity planning tool.© 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

20.
We study a periodic-review assemble-to-order (ATO) system with multiple components and multiple products, in which the inventory replenishment for each component follows an independent base-stock policy and stochastic product demands are satisfied according to a First-Come-First-Served rule. We assume that the replenishment for various component suffers from lead time uncertainty. However, the decision maker has the so-called advance supply information (ASI) associated with the lead times and thus can take advantage of the information for system optimization. We propose a multistage stochastic integer program that incorporates ASI to address the joint optimization of inventory replenishment and component allocation. The optimal base-stock policy for the inventory replenishment is determined using the sample average approximation algorithm. Also, we provide a modified order-based component allocation (MOBCA) heuristic for the component allocation. We additionally consider a special case of the variable lead times where the resulting two-stage stochastic programming model can be characterized as a single-scenario case of the proposed multistage model. We carry out extensive computational studies to quantify the benefits of integrating ASI into joint optimization and to explore the possibility of employing the two-stage model as a relatively efficient approximation scheme for the multistage model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号