首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system consists of m × n components, and fails if and only if k or more components fail in an r × s submatrix. This system can be treated as a reliability model for TFT liquid crystal displays, wireless communication networks, etc. Although an effective method has been developed for evaluating the exact system reliability of small or medium‐sized systems, that method needs extremely high computing time and memory capacity when applied to larger systems. Therefore, developing upper and lower bounds and accurate approximations for system reliability is useful for large systems. In this paper, first, we propose new upper and lower bounds for the reliability of a 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system. Secondly, we propose two limit theorems for that system. With these theorems we can obtain accurate approximations for system reliabilities when the system is large and component reliabilities are close to one. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

2.
The sequential order statistics (SOS) are a good way to model the lifetimes of the components in a system when the failure of a component at time t affects the performance of the working components at this age t. In this article, we study properties of the lifetimes of the coherent systems obtained using SOS. Specifically, we obtain a mixture representation based on the signature of the system. This representation is used to obtain stochastic comparisons. To get these comparisons, we obtain some ordering properties for the SOS, which in this context represent the lifetimes of k‐out‐of‐n systems. In particular, we show that they are not necessarily hazard rate ordered. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

3.
In this article, a model for a repairable consecutive‐k‐out‐of‐n: F system with Markov dependence is studied. A binary vector is used to represent the system state. The failure rate of a component in the system depends on the state of the preceding component. The failure risk of a system state is then introduced. On the basis of the failure risk, a priority repair rule is adopted. Then the transition density matrix can be determined, and the analysis of the system reliability can be conducted accordingly. One example each of a linear and a circular system is then studied in detail to explain the model and methodology developed in this paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 18–39, 2000  相似文献   

4.
Following a review of the basic ideas in structural reliability, including signature‐based representation and preservation theorems for systems whose components have independent and identically distributed (i.i.d.) lifetimes, extensions that apply to the comparison of coherent systems of different sizes, and stochastic mixtures of them, are obtained. It is then shown that these results may be extended to vectors of exchangeable random lifetimes. In particular, for arbitrary systems of sizes m < n with exchangeable component lifetimes, it is shown that the distribution of an m‐component system's lifetime can be written as a mixture of the distributions of k‐out‐of‐n systems. When the system has n components, the vector of coefficients in this mixture representation is precisely the signature of the system defined in Samaniego, IEEE Trans Reliabil R–34 (1985) 69–72. These mixture representations are then used to obtain new stochastic ordering properties for coherent or mixed systems of different sizes. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

5.
This paper presents a branch and bound algorithm for computing optimal replacement policies in a discrete‐time, infinite‐horizon, dynamic programming model of a binary coherent system with n statistically independent components, and then specializes the algorithm to consecutive k‐out‐of‐n systems. The objective is to minimize the long‐run expected average undiscounted cost per period. (Costs arise when the system fails and when failed components are replaced.) An earlier paper established the optimality of following a critical component policy (CCP), i.e., a policy specified by a critical component set and the rule: Replace a component if and only if it is failed and in the critical component set. Computing an optimal CCP is a optimization problem with n binary variables and a nonlinear objective function. Our branch and bound algorithm for solving this problem has memory storage requirement O(n) for consecutive k‐out‐of‐n systems. Extensive computational experiments on such systems involving over 350,000 test problems with n ranging from 10 to 150 find this algorithm to be effective when n ≤ 40 or k is near n. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 288–302, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10017  相似文献   

6.
Measuring the relative importance of components in a mechanical system is useful for various purposes. In this article, we study Birnbaum and Barlow‐Proschan importance measures for two frequently studied system designs: linear consecutive k ‐out‐of‐ n and m ‐consecutive‐ k ‐out‐of‐ n systems. We obtain explicit expressions for the component importance measures for systems consisting of exchangeable components. We illustrate the results for a system whose components have a Lomax type lifetime distribution. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

7.
The opportunistic maintenance of a k‐out‐of‐n:G system with imperfect preventive maintenance (PM) is studied in this paper, where partial failure is allowed. In many applications, the optimal maintenance actions for one component often depend on the states of the other components and system reliability requirements. Two new (τ, T) opportunistic maintenance models with the consideration of reliability requirements are proposed. In these two models, only minimal repairs are performed on failed components before time τ and the corrective maintenance (CM) of all failed components are combined with PM of all functioning but deteriorated components after τ; if the system survives to time T without perfect maintenance, it will be subject to PM at time T. Considering maintenance time, asymptotic system cost rate and availability are derived. The results obtained generalize and unify some previous research in this area. Application to aircraft engine maintenance is presented. © 2000 John Wiley & Sons;, Inc. Naval Research Logistics 47: 223–239, 2000  相似文献   

8.
This paper proposes a new model that generalizes the linear consecutive k‐out‐of‐r‐from‐n:F system to multistate case with multiple failure criteria. In this model (named linear multistate multiple sliding window system) the system consists of n linearly ordered multistate elements (MEs). Each ME can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. Several functions are defined for a set of integer numbers ρ in such a way that for each r ∈ ρ corresponding function fr produces negative values if the combination of performance rates of r consecutive MEs corresponds to the unacceptable state of the system. The system fails if at least one of functions fr for any r consecutive MEs for r ∈ ρ produces a negative value. An algorithm for system reliability evaluation is suggested which is based on an extended universal moment generating function. Examples of system reliability evaluation are presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

9.
Reliability Economics is a field that can be defined as the collection of all problems in which there is tension between the performance of systems of interest and their cost. Given such a problem, the aim is to resolve the tension through an optimization process that identifies the system which maximizes some appropriate criterion function (e.g. expected lifetime per unit cost). In this paper, we focus on coherent systems of n independent and identically distributed (iid) components and mixtures thereof, and characterize both a system's performance and cost as functions of the system's signature vector (Samaniego, IEEE Trans Reliabil (1985) 69–72). For a given family of criterion functions, a variety of optimality results are obtained for systems of arbitrary order n. Approximations are developed and justified when the underlying component distribution is unknown. Assuming the availability of an auxiliary sample of N component failure times, the asymptotic theory of L‐estimators is adapted for the purpose of establishing the consistency and asymptotic normality of the proposed estimators of the expected ordered failure times of the n components of the systems under study. These results lead to the identification of ε‐optimal systems relative to the chosen criterion function. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

10.
We investigate the joint signature of m coherent systems, under the assumption that the components have independent and identically distributed lifetimes. The joint signature, for a particular ordering of failure times, is an m ‐dimensional matrix depending solely on the composition of the systems and independent of the underlying distribution function of the component lifetimes. The elements of the m ‐dimensional matrix are formulated based on the joint signatures of numerous series of parallel systems. The number of the joint signatures involved is an exponential function of the number of the minimal cut sets of each original system and may, therefore, be significantly large. We prove that although this number is typically large, a great number of the joint signatures are repeated, or removed by negative signs. We determine the maximum number of different joint signatures based on the number of systems and components. It is independent of the number of the minimal cut sets of each system and is polynomial in the number of components. Moreover, we consider all permutations of failure times and demonstrate that the results for one permutation can be of use for the others. Our theorems are applied to various examples. The main conclusion is that the joint signature can be computed much faster than expected.  相似文献   

11.
In this article, we study reliability properties of m‐consecutive‐k‐out‐of‐n: F systems with exchangeable components. We deduce exact formulae and recurrence relations for the signature of the system. Closed form expressions for the survival function and the lifetime distribution as a mixture of the distribution of order statistics are established as well. These representations facilitate the computation of several reliability characteristics of the system for a given exchangeable joint distribution or survival function. Finally, we provide signature‐based stochastic ordering results for the system's lifetime and investigate the IFR preservation property under the formulation of m‐consecutive‐k‐out‐of‐n: F systems. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

12.
In this paper we first introduce and study the notion of failure profiles which is based on the concepts of paths and cuts in system reliability. The relationship of failure profiles to two notions of component importance is highlighted, and an expression for the density function of the lifetime of a coherent system, with independent and not necessarily identical component lifetimes, is derived. We then demonstrate the way that failure profiles can be used to establish likelihood ratio orderings of lifetimes of two systems. Finally we use failure profiles to obtain bounds, in the likelihood ratio sense, on the lifetimes of coherent systems with independent and not necessarily identical component lifetimes. The bounds are relatively easy to compute and use. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

13.
Burn‐in procedure is a manufacturing technique that is intended to eliminate early failures of system or product. Burning‐in a component or system means to subject it to a period of use prior to being used in field. Generally, burn‐in is considered expensive and so the length of burn‐in is typically limited. Thus, burn‐in is most often accomplished in an accelerated environment in order to shorten the burn‐in process. A new failure rate model for an accelerated burn‐in procedure, which incorporates the accelerated ageing process induced by the accelerated environmental stress, is proposed. Under a more general assumption on the shape of failure rate function of products, which includes the traditional bathtub‐shaped failure rate function as a special case, upper bounds for optimal burn‐in time will be derived. A numerical example will also be given for illustration. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

14.
We consider an integrated usage and maintenance optimization problem for a k‐out‐of‐n system pertaining to a moving asset. The k‐out‐of‐n systems are commonly utilized in practice to increase availability, where n denotes the total number of parallel and identical units and k the number of units required to be active for a functional system. Moving assets such as aircraft, ships, and submarines are subject to different operating modes. Operating modes can dictate not only the number of system units that are needed to be active, but also where the moving asset physically is, and under which environmental conditions it operates. We use the intrinsic age concept to model the degradation process. The intrinsic age is analogous to an intrinsic clock which ticks on a different pace in different operating modes. In our problem setting, the number of active units, degradation rates of active and standby units, maintenance costs, and type of economic dependencies are functions of operating modes. In each operating mode, the decision maker should decide on the set of units to activate (usage decision) and the set of units to maintain (maintenance decision). Since the degradation rate differs for active and standby units, the units to be maintained depend on the units that have been activated, and vice versa. In order to minimize maintenance costs, usage and maintenance decisions should be jointly optimized. We formulate this problem as a Markov decision process and provide some structural properties of the optimal policy. Moreover, we assess the performance of usage policies that are commonly implemented for maritime systems. We show that the cost increase resulting from these policies is up to 27% for realistic settings. Our numerical experiments demonstrate the cases in which joint usage and maintenance optimization is more valuable. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 418–434, 2017  相似文献   

15.
A 2‐dimensional rectangular (cylindrical) k‐within‐consecutive‐r × s‐out‐of‐m × n:F system is the rectangular (cylindrical) m × n‐system if the system fails whenever k components in a r × s‐submatrix fail. This paper proposes a recursive algorithm for the reliability of the 2‐dimensional k‐within‐consecutive‐r × s‐out‐m × n:F system, in the rectangular case and the cylindrical case. This algorithm requires min ( O (mkr(n?s)), O (nks(m?r))), and O (mkrn) computing time in the rectangular case and the cylindrical case, respectively. The proposed algorithm will be demonstrated and some numerical examples will be shown. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 625–637, 2001.  相似文献   

16.
We consider a system composed of k components, each of which is subject to failure if temperature is above a critical level. The failure of one component causes the failure of the system as a whole (a serially connected system). If zi is the critical temperature of the ith component then z* = min{zi: i = 1,2,…, k} is the critical level of the system. The components may be tested individually at different temperature levels, if the temperature is below the critical level the cost is $1, otherwise the test is destructive and the cost is m > 1 dollars. The purpose of this article is to construct, under a budgetary constraint, an efficient (in a minmax sense) testing procedure which will locate the critical level of the system with maximal accuracy.  相似文献   

17.
Burn‐in is a technique to enhance reliability by eliminating weak items from a population of items having heterogeneous lifetimes. System burn‐in can improve system reliability, but the conditions for system burn‐in to be performed after component burn‐in remain a little understood mathematical challenge. To derive such conditions, we first introduce a general model of heterogeneous system lifetimes, in which the component burn‐in information and assembly problems are related to the prediction of system burn‐in. Many existing system burn‐in models become special cases and two important results are identified. First, heterogeneous system lifetimes can be understood naturally as a consequence of heterogeneous component lifetimes and heterogeneous assembly quality. Second, system burn‐in is effective if assembly quality variation in the components and connections which are arranged in series is greater than a threshold, where the threshold depends on the system structure and component failure rates. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 364–380, 2003.  相似文献   

18.
Various indices of component importance with respect to system reliability have been proposed. The most popular one is the Birnbaum importance. In particular, a special case called uniform Birnbaum importance in which all components have the same reliability p has been widely studied for the consecutive‐k system. Since it is not easy to compare uniform Birnbaum importance, the literature has looked into the case p = ½, p → 1, or p ≥ ½. In this paper, we look into the case p → 0 to complete the spectrum of examining Birnbaum importance over the whole range of p. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 159–166, 2002; DOI 10.1002/nav.10001  相似文献   

19.
Consider an N‐item, periodic review, infinite‐horizon, undiscounted, inventory model with stochastic demands, proportional holding and shortage costs, and full backlogging. For 1 ≤ jN, orders for item j can arrive in every period, and the cost of receiving them is negligible (as in a JIT setting). Every Tj periods, one reviews the current stock level of item j and decides on deliveries for each of the next Tj periods, thus incurring an item‐by‐item fixed cost kj. There is also a joint fixed cost whenever any item is reviewed. The problem is to find review periods T1, T2, …, TN and an ordering policy satisfying the average cost criterion. The current article builds on earlier results for the single‐item case. We prove an optimal policy exists, give conditions where it has a simple form, and develop a branch and bound algorithm for its computation. We also provide two heuristic policies with O(N) computational requirements. Computational experiments indicate that the branch and bound algorithm can handle normal demand problems with N ≤ 10 and that both heuristics do well for a wide variety of problems with N ranging from 2 to 200; moreover, the performance of our heuristics seems insensitive to N. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:430–449, 2001  相似文献   

20.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we consider the problem of determining bounds to the optimal burn‐in time and optimal replacement policy maximizing the steady state availability of a repairable system. It is assumed that two types of system failures may occur: One is Type I failure (minor failure), which can be removed by a minimal repair, and the other is Type II failure (catastrophic failure), which can be removed only by a complete repair. Assuming that the underlying lifetime distribution of the system has a bathtub‐shaped failure rate function, upper and lower bounds for the optimal burn‐in time are provided. Furthermore, some other applications of optimal burn‐in are also considered. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号