首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motivated by the presence of loss‐averse decision making behavior in practice, this article considers a supply chain consisting of a firm and strategic consumers who possess an S‐shaped loss‐averse utility function. In the model, consumers decide the purchase timing and the firm chooses the inventory level. We find that the loss‐averse consumers' strategic purchasing behavior is determined by their perceived gain and loss from strategic purchase delay, and the given rationing risk. Thus, the firm that is cognizant of this property tailors its inventory stocking policy based on the consumers' loss‐averse behavior such as their perceived values of gain and loss, and their sensitivity to them. We also demonstrate that the firm's equilibrium inventory stocking policy reflects both the economic logic of the traditional newsvendor inventory model, and the loss‐averse behavior of consumers. The equilibrium order quantity is significantly different from those derived from models that assume that the consumers are risk neutral and homogeneous in their valuations. We show that the firm that ignores strategic consumer's loss‐aversion behavior tends to keep an unnecessarily high inventory level that leads to excessive leftovers. Our numerical experiments further reveal that in some extreme cases the firm that ignores strategic consumer's loss‐aversion behavior generates almost 92% more leftovers than the firm that possesses consumers’ loss‐aversion information and takes it into account when making managerial decisions. To mitigate the consumer's forward‐looking behavior, we propose the adoption of the practice of agile supply chain management, which possesses the following attributes: (i) procuring inventory after observing real‐time demand information, (ii) enhanced design (which maintains the current production mix but improves the product performance to a higher level), and (iii) customized design (which maintains the current performance level but increases the variety of the current production line to meet consumers’ specific demands). We show that such a practice can induce the consumer to make early purchases by increasing their rationing risk, increasing the product value, or diversifying the product line. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 435–453, 2015  相似文献   

2.
This article examines a problem faced by a firm procuring a material input or good from a set of suppliers. The cost to procure the material from any given supplier is concave in the amount ordered from the supplier, up to a supplier‐specific capacity limit. This NP‐hard problem is further complicated by the observation that capacities are often uncertain in practice, due for instance to production shortages at the suppliers, or competition from other firms. We accommodate this uncertainty in a worst‐case (robust) fashion by modeling an adversarial entity (which we call the “follower”) with a limited procurement budget. The follower reduces supplier capacity to maximize the minimum cost required for our firm to procure its required goods. To guard against uncertainty, the firm can “protect” any supplier at a cost (e.g., by signing a contract with the supplier that guarantees supply availability, or investing in machine upgrades that guarantee the supplier's ability to produce goods at a desired level), ensuring that the anticipated capacity of that supplier will indeed be available. The problem we consider is thus a three‐stage game in which the firm first chooses which suppliers' capacities to protect, the follower acts next to reduce capacity from unprotected suppliers, and the firm then satisfies its demand using the remaining capacity. We formulate a three‐stage mixed‐integer program that is well‐suited to decomposition techniques and develop an effective cutting‐plane algorithm for its solution. The corresponding algorithmic approach solves a sequence of scaled and relaxed problem instances, which enables solving problems having much larger data values when compared to standard techniques. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

3.
This article analyzes dual sourcing decisions under stochastically dependent supply and demand uncertainty. A manufacturer faces the trade‐off between investing in unreliable but high‐margin offshore supply and in reliable but low‐margin local supply, where the latter allows for production that is responsively contingent on the actual demand and offshore supply conditions. Cost thresholds for both types of supply determine the optimal resource allocation: single offshore sourcing, single responsive sourcing, or dual sourcing. Relying on the concept of concordance orders, we study the effects of correlation between supply and demand uncertainty. Adding offshore supply to the sourcing portfolio becomes more favorable under positive correlation, since offshore supply is likely to satisfy demand when needed. Selecting responsive capacity under correlated supply and demand uncertainty is not as straightforward, yet we establish the managerially relevant conditions under which responsive capacity either gains or loses in importance. Our key results are extended to the broad class of endogenous supply uncertainty developed by Dada et al. [Manufact Serv Operat Mange 9 (2007), 9–32].© 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

4.
We consider the problem of designing a contract to maximize the supplier's profit in a one‐supplier–one‐buyer relationship for a short‐life‐cycle product. Demand for the finished product is stochastic and price‐sensitive, and only its probability distribution is known when the supply contract is written. When the supplier has complete information on the marginal cost of the buyer, we show that several simple contracts can induce the buyer to choose order quantity that attains the single firm profit maximizing solution, resulting in the maximum possible profit for the supplier. When the marginal cost of the buyer is private information, we show that it is no longer possible to achieve the single firm solution. In this case, the optimal order quantity is always smaller while the optimal sale price of the finished product is higher than the single firm solution. The supplier's profit is lowered while that of the buyer is improved. Moreover, a buyer who has a lower marginal cost will extract more profit from the supplier. Under the optimal contract, the supplier employs a cutoff level policy on the buyer's marginal cost to determine whether the buyer should be induced to sign the contract. We characterize the optimal cutoff level and show how it depends on the parameters of the problem. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 41–64, 2001  相似文献   

5.
This article is concerned with the determination of pricing strategies for a firm that in each period of a finite horizon receives replenishment quantities of a single product which it sells in two markets, for example, a long‐distance market and an on‐site market. The key difference between the two markets is that the long‐distance market provides for a one period delay in demand fulfillment. In contrast, on‐site orders must be filled immediately as the customer is at the physical on‐site location. We model the demands in consecutive periods as independent random variables and their distributions depend on the item's price in accordance with two general stochastic demand functions: additive or multiplicative. The firm uses a single pool of inventory to fulfill demands from both markets. We investigate properties of the structure of the dynamic pricing strategy that maximizes the total expected discounted profit over the finite time horizon, under fixed or controlled replenishment conditions. Further, we provide conditions under which one market may be the preferred outlet to sale over the other. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 531–549, 2015  相似文献   

6.
A firm making quantity decision under uncertainty loses profit if its private information is leaked to competitors. Outsourcing increases this risk as a third party supplier may leak information for its own benefit. The firm may choose to conceal information from the competitors by entering in a confidentiality agreement with the supplier. This, however, diminishes the firm's ability to dampen competition by signaling a higher quantity commitment. We examine this trade‐off in a stylized supply chain in which two firms, endowed with private demand information, order sequentially from a common supplier, and engage in differentiated quantity competition. In our model, the supplier can set different wholesale prices for firms, and the second‐mover firm could be better informed. Contrary to what is expected, information concealment is not always beneficial to the first mover. We characterize conditions under which the first mover firm will not prefer concealing information. We show that this depends on the relative informativeness of the second mover and is moderated by competition intensity. We examine the supplier's incentive in participating in information concealment, and develop a contract that enables it for wider set of parameter values. We extend our analysis to examine firms' incentive to improve information. © 2014 Wiley Periodicals, Inc. 62:1–15, 2015  相似文献   

7.
It is well known that replacing several products by a single common product can reduce required safety stock levels due to the benefits of risk pooling. Recent research utilizing single‐period models has investigated the cost savings (or losses) from doing so. This paper uses a very general multiple‐period model, with general demand distributions, any number of products, and the objective of minimizing production, holding, and shortage costs. Two scenarios are considered—one that utilizes a common product and one that does not. Prior results utilizing single‐period models indicate that even if the common product is more expensive than the products it replaces, there are many circumstances under which it is still worthwhile to employ. Surprisingly, this paper will show that this is almost never the case in a multiple‐period model. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 737–751, 1999  相似文献   

8.
We investigate the relative effectiveness of top‐down versus bottom‐up strategies for forecasting the demand of an item that belongs to a product family. The demand for each item in the family is assumed to follow a first‐order univariate autoregressive process. Under the top‐down strategy, the aggregate demand is forecasted by using the historical data of the family demand. The demand forecast for the items is then derived by proportional allocation of the aggregate forecast. Under the bottom‐up strategy, the demand forecast for each item is directly obtained by using the historical demand data of the particular item. In both strategies, the forecasting technique used is exponential smoothing. We analytically evaluate the condition under which one forecasting strategy is preferred over the other when the lag‐1 autocorrelation of the demand time series for all the items is identical. We show that when the lag‐1 autocorrelation is smaller than or equal to 1/3, the maximum difference in the performance of the two forecasting strategies is only 1%. However, if the lag‐1 autocorrelation of the demand for at least one of the items is greater than 1/3, then the bottom‐up strategy consistently outperforms the top‐down strategy, irrespective of the items' proportion in the family and the coefficient of correlation between the item demands. A simulation study reveals that the analytical findings hold even when the lag‐1 autocorrelation of the demand processes is not identical. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

9.
This article studies a firm that procures a product from a supplier. The quality of each product unit is measured by a continuous variable that follows a normal distribution and is correlated within a batch. The firm conducts an inspection and pays the supplier only if the product batch passes the inspection. The inspection not only serves the purpose of preventing a bad batch from reaching customers but also offers the supplier an incentive to improve product quality. The firm determines the acceptance sampling plan, and the supplier determines the quality effort level in either a simultaneous game or a Stackelberg leadership game, in which both parties share inspection cost and recall loss caused by low product quality. In the simultaneous game, we identify the Nash equilibrium form, provide sufficient conditions that guarantee the existence of a pure strategy Nash equilibrium, and find parameter settings under which the decentralized and centralized supply chains achieve the same outcome. By numerical experiments, we show that the firm's acceptance sampling plan and the supplier's quality effort level are sensitive to both the recall loss sharing ratio and the game format (i.e., the precommitment assumption of the inspection policy). © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

10.
Technology products often experience a life‐cycle demand pattern that resembles a diffusion process, with weak demand in the beginning and the end of the life cycle and high demand intensity in between. The customer price‐sensitivity also changes over the life cycle of the product. We study the prespecified pricing decision for a product that exhibits such demand characteristics. In particular, we determine the optimal set of discrete prices and the times to switch from one price to another, when a limited number of price changes are allowed. Our study shows that the optimal prices and switching times show interesting patterns that depend on the product's demand pattern and the change in the customers' price sensitivity over the life cycle of the product. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

11.
We examine the behavior of a manufacturer and a retailer in a decentralized supply chain under price‐dependent, stochastic demand. We model a retail fixed markup (RFM) policy, which can arise as a form of vertically restrictive pricing in a supply chain, and we examine its effect on supply chain performance. We prove the existence of the optimal pricing and replenishment policies when demand has a linear additive form and the distribution of the uncertainty component has a nondecreasing failure rate. We numerically compare the relative performance of RFM to a price‐only contract and we find that RFM results in greater profit for the supply chain than the price‐only contract in a variety of scenarios. We find that RFM can lead to Pareto‐improving solutions where both the supplier and the retailer earn more profit than under a price‐only contract. Finally, we compare RFM to a buyback contract and explore the implications of allowing the fixed markup parameter to be endogenous to the model. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   

12.
Vendor‐managed revenue‐sharing arrangements are common in the newspaper and other industries. Under such arrangements, the supplier decides on the level of inventory while the retailer effectively operates under consignment, sharing the sales revenue with his supplier. We consider the case where the supplier is unable to predict demand, and must base her decisions on the retailer‐supplied probabilistic forecast for demand. We show that the retailer's best choice of a distribution to report to his supplier will not be the true demand distribution, but instead will be a degenerate distribution that surprisingly induces the supplier to provide the system‐optimal inventory quantity. (To maintain credibility, the retailer's reports of daily sales must then be consistent with his supplied forecast.) This result is robust under nonlinear production costs and nonlinear revenue‐sharing. However, if the retailer does not know the supplier's production cost, the forecast “improves” and could even be truthful. That, however, causes the supplier's order quantity to be suboptimal for the overall system. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

13.
We consider a firm which faces a Poisson customer demand and uses a base‐stock policy to replenish its inventories from an outside supplier with a fixed lead time. The firm can use a preorder strategy which allows the customers to place their orders before their actual need. The time from a customer's order until the date a product is actually needed is called commitment lead time. The firm pays a commitment cost which is strictly increasing and convex in the length of the commitment lead time. For such a system, we prove the optimality of bang‐bang and all‐or‐nothing policies for the commitment lead time and the base‐stock policy, respectively. We study the case where the commitment cost is linear in the length of the commitment lead time in detail. We show that there exists a unit commitment cost threshold which dictates the optimality of either a buy‐to‐order (BTO) or a buy‐to‐stock strategy. The unit commitment cost threshold is increasing in the unit holding and backordering costs and decreasing in the mean lead time demand. We determine the conditions on the unit commitment cost for profitability of the BTO strategy and study the case with a compound Poisson customer demand.  相似文献   

14.
We study the supplier relationship choice for a buyer that invests in transferable capacity operated by a supplier. With a long‐term relationship, the buyer commits to source from a supplier over a long period of time. With a short‐term relationship, the buyer leaves open the option of switching to a new supplier in the future. The buyer has incomplete information about a supplies efficiency, and thus uses auctions to select suppliers and determine the contracts. In addition, the buyer faces uncertain demand for the product. A long‐term relationship may be beneficial for the buyer because it motivates more aggressive bidding at the beginning, resulting a lower initial price. A short‐term relationship may be advantageous because it allows switching, with capacity transfer at some cost, to a more efficient supplier in the future. We find that there exists a critical level of the switching cost above which a long‐term relationship is better for the buyer than a short‐term relationship. In addition, this critical switching cost decreases with demand uncertainty, implying a long‐term relationship is more favorable for a buyer facing volatile demand. Finally, we find that in a long‐term relationship, capacity can be either higher or lower than in a short‐term relationship. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

15.
A change order is frequently initiated by either the supplier or the buyer, especially when the contract is long‐term or when the contractual design is complex. In response to a change order, the buyer can enter a bargaining process to negotiate a new price. If the bargaining fails, she pays a cancellation fee (or penalty) and opens an auction. We call this process the sequential bargaining‐auction (BA). At the time of bargaining, the buyer is uncertain as to whether the bargained price is set to her advantage; indeed, she might, or might not, obtain a better price in the new auction. To overcome these difficulties, we propose a new change‐order‐handling mechanism by which the buyer has an option to change the contractual supplier after bargaining ends with a bargained price. We call this the option mechanism. By this mechanism, the privilege of selling products or services is transferred to a new supplier if the buyer exercises the option. To exercise the option, the buyer pays a prespecified cash payment, which we call the switch price, to the original supplier. If the option is not exercised, the bargained price remains in effect. When a switch price is proposed by the buyer, the supplier decides whether or not to accept it. If the supplier accepts it, the buyer opens an auction. The option is exercised when there is a winner in the auction. This article shows how, under the option mechanism, the optimal switch price and the optimal reserve price are determined. Compared to the sequential BA, both the buyer and the supplier benefit. Additionally, the option mechanism coordinates the supply chain consisting of the two parties. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 248–265, 2015  相似文献   

16.
Supply chain members can gain substantial benefits by coordinating their activities. However, a remaining challenge is to create useful coordination mechanisms when channel members are independent. This paper develops a coordination strategy with which a supplier uses quantity discounts to entice independent buyers to comply with an integer‐ratio time coordination scheme. The problem is analyzed as a Stackelberg game in which the supplier acts as the leader by announcing its coordination policy in advance and buyers act as followers by deciding their ordering decisions with this information. The strategy is compared to a coordination mechanism with quantity discounts and power‐of‐two time coordination. While both strategies are able to produce substantial benefits over simple quantity discounts, integer‐ratio time coordination provides a better coordination mechanism for a decentralized supply chain. It is shown that power‐of‐two time coordination may not be able to provide a stable equilibrium coordination strategy when buyers act independently and opportunistically. Furthermore, if this is not the case, integer‐ratio time coordination is at least equally effective. Unlike a centralized solution, under which the improvement by integer‐ratio over power‐of‐two time coordination is limited to 2% of optimality, system cost reduction from a decentralized coordination strategy could be much more significant. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

17.
In this paper, we extend the results of Ferguson M. Naval Research Logistics 8 . on an end‐product manufacturer's choice of when to commit to an order quantity from its parts supplier. During the supplier's lead‐time, information arrives about end‐product demand. This information reduces some of the forecast uncertainty. While the supplier must choose its production quantity of parts based on the original forecast, the manufacturer can wait to place its order from the supplier after observing the information update. We find that a manufacturer is sometimes better off with a contract requiring an early commitment to its order quantity, before the supplier commits resources. On the other hand, the supplier sometimes prefers a delayed commitment. The preferences depend upon the amount of demand uncertainty resolved by the information as well as which member of the supply chain sets the exchange price. We also show conditions where demand information updating is detrimental to both the manufacturer and the supplier. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

18.
This note studies the optimal inspection policies in a supply chain in which a manufacturer purchases components from a supplier but has no direct control of component quality. The manufacturer uses an inspection policy and a damage cost sharing contract to encourage the supplier to improve the component quality. We find that all‐or‐none inspection policies are optimal for the manufacturer if the supplier's share of the damage cost is larger than a threshold; otherwise, the manufacturer should inspect a fraction of a batch. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

19.
Negotiations between an end product manufacturer and a parts supplier often revolve around two main issues: the supplier's price and the length of time the manufacturer is contractually held to its order quantity, commonly termed the “commitment time frame.” Because actual demand is unknown, the specification of the commitment time frame determines how the demand risk is shared among the members of the supply chain. Casual observation indicates that most manufacturers prefer to delay commitments as long as possible while suppliers prefer early commitments. In this paper, we investigate whether these goals are always in the firm's best interest. In particular, we find that the manufacturer may sometimes be better off with a contract that requires an early commitment to its order quantity, before the supplier commits resources and the supplier may sometimes be better off with a delayed commitment. We also find that the preferred commitment time frame depends upon which member of the supply chain has the power to set their exchange price. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

20.
Transfer pricing refers to the pricing of an intermediate product or service within a firm. This product or service is transferred between two divisions of the firm. Thus, transfer pricing is closely related to the allocation of profits in a supply chain. Motivated by the significant impact of transfer pricing methods for tax purposes on operational decisions and the corresponding profits of a supply chain, in this article, we study a decentralized supply chain of a multinational firm consisting of two divisions: a manufacturing division and a retail division. These two divisions are located in different countries under demand uncertainty. The retail division orders an intermediate product from the upstream manufacturing division and sets the retail price under random customer demand. The manufacturing division accepts or rejects the retail division's order. We specifically consider two commonly used transfer pricing methods for tax purposes: the cost‐plus method and the resale‐price method. We compare the supply chain profits under these two methods. Based on the newsvendor framework, our analysis shows that the cost‐plus method tends to allocate a higher percentage of profit to the retail division, whereas the resale‐price method tends to achieve a higher firm‐wide profit. However, as the variability of demand increases, our numerical study suggests that the firm‐wide and divisional profits tend to be higher under the cost‐plus method than they are under the resale‐price method. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号