首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以常规火箭弹制导化改造过程中弹载捷联惯导的初始对准为背景,研究了利用发射车车载高精度定位定向系统作为主惯导,对火箭弹捷联惯导进行传递对准的速度加姿态匹配方案,介绍了在三轴转台上进行实验验证的方法、过程和结果。实验结果表明,该方案对准精度高、对准时间短、对准机动要求简单,可以有效完成制导火箭弹捷联惯导的初始对准。  相似文献   

2.
传递对准中机翼弹性变形处理   总被引:1,自引:0,他引:1  
提出利用载机不同飞行状态下弹载子惯导陀螺仪与机载主惯导陀螺仪输出角速度差异对机翼弹性变形的AR模型参数进行在线辨识,采用一种改进的卡尔曼滤波算法对模型参数进行估计,利用信息对准模型的适应性进行检验.结合速度加姿态传递对准模型,建立了考虑机翼弹性变形的传递对准模型.仿真试验验证了该在线建模方法的有效性,在传递对准中考虑机翼弹性变形模型,可以有效地降低机翼弹性变形对传递对准的影响.  相似文献   

3.
首先建立了捷联惯导系统的误差模型,并对系统的误差模型进行了可观测性分析,然后针对车载激光捷联惯导系统的特点,采用卡尔曼滤波方法,对姿态误差角进行了估计,给出了方差仿真曲线.通过计算机仿真结果的分析,提出了一种快速估计方位失准角的方法,从而大大缩短了初始对准时间.仿真结果表明将该方法应用于车载激光捷联惯导系统初始对准中是有效的.  相似文献   

4.
车载武器沿纵轴和横轴的机动能力受到很大限制,无法作大的角机动,而传统的速度或姿态匹配算法需要载体能作大幅度的机动运动,否则方位失准角的估计效果不理想。针对车载武器系统机动能力受限的现状,特提出"速度+角速度"匹配算法。同时将导弹的起竖过程中作为机动条件,并将主子惯导之间的挠曲变形作为噪声用H∞滤波器进行处理,解决了建模困难的问题。经仿真分析,该方法可以在导弹起竖过程中完成传递对准,对准精度可在90 s起竖过程内达到3'以内。  相似文献   

5.
舰载捷联惯导动基座 F-QUEST 初始对准方法   总被引:2,自引:0,他引:2  
针对目前基于惯性系的捷联惯导动基座对准方法信息利用率不高及矢量观测选取不确定性导致对准精度下降的问题,提出了一种新的舰载捷联惯导动基座滤波四元数估计(filter quaternion estimation,F-QUEST)对准方法。构建了捷联惯导动基座初始对准模型,并利用姿态矩阵链式法则将惯导初始对准转化为姿态确定问题,进而采用 F-QUEST 算法求取姿态矩阵以实现捷联惯导动基座对准。车载试验结果表明:相比传统方法,新方法具有更高的对准精度和更快的收敛速度,水平姿态角误差只需3 s 即可收敛到0.01°。  相似文献   

6.
捷联式惯导系统的对准,是指在系统进入工作前建立姿态矩阵的初始值。针对低精度捷联式惯导的初始对准,提出了基于捷联式惯导系统和双天线GPS测向系统组合的初始对准方案,并着重推导了失准角和陀螺常值漂移的计算过程,最后利用最小二乘法进行了实验验证,结果表明方法可行。  相似文献   

7.
初始对准是惯导系统开启工作后必须经历的阶段,而传递对准则是一种特殊的动基座初始对准技术,可有效提高武器装备的快速反应和精准打击能力。对惯导系统传递对准模型的研究进展进行了综合评述。首先,从姿态误差的定义出发,系统归纳了?n角误差模型、?m角误差模型和相对姿态对准模型,对比分析了三类误差模型的特点。其次,给出了导航速度、相对速度和惯性速度的定义,理论推导了三种导航速度误差方程。然后,介绍了传递对准的量测模型,并重点归纳了基于相对姿态理论的文献所采用的量测模型。最后,讨论了传递对准有待解决的技术问题和未来研究方向。综述表明,误差的数学定义和参考坐标系以及匹配参数决定了传递对准模型的丰富性,在实际使用时,可以根据应用背景以及使用条件选择相应的传递对准模型,而在误差建模、误差激励、性能评估等方面,传递对准技术都有待进一步研究。  相似文献   

8.
针对快速传递对准中主子惯导相对姿态存在大角度的情况,推导了捷联惯导大失准角误差模型.该模型采用欧拉角表示姿态误差,并用欧拉运动方程准确描述其传播规律.鉴于该模型中的姿态观测方程是复杂的非线性函数,采用无需求导的UKF算法,并采用奇异值分解(SVD)解决方差阵的病态问题.仿真结果表明,该算法在小角度误差条件下滤波精度优于线性模型,并且适用于大角度误差条件.  相似文献   

9.
捷联惯导惯性系对准误差分析   总被引:1,自引:0,他引:1  
针对捷联惯导晃动基座下惯性系粗对准两种不同的计算方法,分析了由陀螺常值漂移和加速度计零偏引起的漂移误差(即平台失准角)、刻度误差和歪斜误差,并推导了这些误差项与惯性元件误差之间关系的解析表达式。结果表明:两种惯性系对准算法的平台失准角具有相同的极限精度,并且与传统解析对准法的精度一致;惯性系对准法的歪斜误差很小可以忽略,但需对姿态阵正交化以消除刻度误差的影响。  相似文献   

10.
为减小IMU 安装误差及陀螺漂移对捷联惯性系统导航参数精度的影响,采用速度/姿态角组合匹配传递对准模型的误差方程和IMU的安装误差角方程结合的方法组成新的滤波器模型,并引入改进的BP神经网络算法,实现了IMU安装误差及陀螺漂移的快速有效估计.为对捷联惯性导系统的各项导航参数进行修正和补偿、提高导航精度提供了依据.  相似文献   

11.
在SINS(捷联式惯性导航系统)与GPS(全球定位系统)组合传递对准时,航向角的可观测性较弱,经过卡尔曼滤波后,航向角误差虽有所改善,但仍呈发散趋势,针对GPS/SINS组合系统特点,提出了一种动基座传递对准方案,依靠GPS测量信息进行速度匹配,完成动基座传递对准.该方案采用粒子滤波方法解决对准过程中的非线性问题.仿真结果表明该方案的对准精度(1σ)可以达到东向失准角误差为5角分,北向失准角误差为2角分,方位失准角误差为6角分.  相似文献   

12.
飞行器INS/SAR组合导航中SAR匹配位置参数作为组合滤波器的输入之前需经过多个传递环节的转换.研究了从地面SAR匹配位置到载体主惯导中心位置所涉及各环节间的相互关系及诸参数在各环节中的传递过程,包括地面SAR匹配位置参数向飞行器上SAR相位中心的传递,SAR相位中心参数向辅助惯导中心的传递以及辅助惯导中心位置参数向主惯导位置中心的传递,以此为基础建立测量参数传递过程数学模型.基于传递模型惯导修正及传递误差分析实验结果与实际相符,验证了参数传递模型的正确性与可行性.  相似文献   

13.
卫星/微惯导组合导航是目前弹载导航系统领域的研究热点。在深入研究弹载卫星/微惯导组合导航体系架构的基础上,分析了弹载导航的关键技术以及各关键技术的解决方案;采用适应高过载环境的微惯性元件及电路模块的缓冲保护措施,提高组合导航系统的抗高过载性能;提出卫星辅助MEMS测量信息的姿态角估计技术解决了空中对准问题,采用基于加性四元数的差量卡尔曼滤波技术,实现了卫星定位与微惯导的高精度组合。试验结果表明,该技术可有效解决制导弹药的导航问题。  相似文献   

14.
为研究垂线偏差对静基座捷联惯导精对准的影响,建立了考虑垂线偏差的捷联惯导误差方程,将重力扰动项分为引起比力测量偏差的部分g■和用于重力模型修正的部分δg~n,提出等效零偏■;基于考虑垂线偏差的静基座下Kalman滤波对准模型推导了姿态的极限对准精度,并给出提高水平姿态对准精度的最优垂线偏差补偿的表达式。仿真结果表明:垂线偏差主要影响惯导系统初始对准的姿态精度,尤其是水平姿态精度;但对捷联惯导系统进行垂线偏差补偿并不一定能提高姿态对准的极限精度,要根据垂线偏差的大小、方向具体分析;当按照最优垂线偏差补偿公式进行补偿时,能够最大程度地提高水平姿态对准精度。仿真结果与理论分析一致。  相似文献   

15.
为了保证捷联惯导系统能够正确给出炮管高低角和方位角,必须对捷联惯组和炮管之间的安装误差角进行标定.介绍了利用经纬仪进行安装误差角标定的原理和方法,还提出另外两种计算安装误差角方法,包括利用欧拉角微分方程进行近似积分方法和利用主惯导与子惯导间的传递对准方法.经对比上述三种方法是等效的,其共同特点是炮管必须作高低角运动,并且要求在运动前后横滚角变化很小.最后,通过调炮试验验证了标定方法的可行性.  相似文献   

16.
针对车(船)载惯性和GPS组合导航系统(INS/GPS),研究单天线GPS对INS的姿态校正方法。提出一种基于单天线GPS进行捷联惯导(SINS)机动中对准和姿态校正方法,该方法以GPS两个不同时刻的不共线速度向量为参考向量,利用TRIAD算法进行姿态确定,并设计了Kalman滤波器估计姿态四元数。仿真试验表明该方案能较好地校正惯导系统的初始对准误差,并通过实时校正保持长期的姿态精度。  相似文献   

17.
在分析中距复合制导空空导弹捷联惯导传递对准的基础上,提出由机载火控系统根据导弹发射包线计算发出开始捷联惯导传递对准精对准的时刻,导弹惯导提前进行传递精对准的方法。利用此方法可以解决机载武器系统多目标攻击空空导弹传递对准满足连续发射多枚导弹实时性要求的问题。最后,在单目标情况下就开始传递对准时刻包线给出了算例。  相似文献   

18.
舰船惯导系统传递对准技术   总被引:1,自引:0,他引:1  
就舰载惯导系统传递对准技术做了系统的阐述.其中包括传递对准的概念、传递对准的方式、信息的传递方式、滤波器的设计等.在滤波器的设计问题上,对时间同步性、载体的形变和杆臂效应、滤波方法的选取、外界干扰的抑制、主运载体的机动性及可实现性等问题都做了详细的说明.  相似文献   

19.
为了分析车载惯导大倾角下的导航姿态误差,提出了大倾角状态下转台方位轴不铅垂度是导航姿态误差的误差源;推导出车载惯导大倾角工作时导航姿态误差与惯导姿态角及转台不铅垂度相关的理论公式,并进行了仿真和实物验证。研究结果表明,大倾角状态下惯导导航输出的方位角误差是转台不铅垂度受方位调制后乘以俯仰角的正切值,橫滚角误差是转台不铅垂度受方位调制后除以俯仰角的余弦值,俯仰角误差是转台不铅垂度受方位调制的结果,与惯导俯仰角大小无关,转台存在不铅垂度时,大俯仰角下导航方位角和横滚角误差明显增大。惯导导航姿态误差呈现360°周期变化的规律且与惯导横滚角大小无关。  相似文献   

20.
为了研究载体姿态角对捷联惯导系统位置误差的影响,建立了静基座捷联式惯导系统的力学编排及误差方程,并通过仿真实验研究了载体在不同姿态角条件下捷联式惯导系统的经度误差随时间的变化规律。仿真实验结果表明:载体姿态角对捷联式惯导系统的经度积累误差影响较大,在[0°,5°]范围内,载体航向角对经度误差漂移的影响最大,载体横滚角次之,载体俯仰角最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号