首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Existing models for describing optimal ordering policies for perishable inventory cast the problem as a multidimensional dynamic program, the dimensionality being one less than the product lifetime in periods. An approach developed in previous work takes explicit account of outdating in the single period model. Formulas for the expected quantity of any new order which will outdate are developed for the case where the demand has a stationary Erlang distribution. A modified version of the one period model is shown to yield a reasonable approximation to the stationary optimal policy.  相似文献   

2.
Consider a single‐item, periodic review, infinite‐horizon, undiscounted, inventory model with stochastic demands, proportional holding and shortage costs, and full backlogging. Orders can arrive in every period, and the cost of receiving them is negligible (as in a JIT setting). Every T periods, one audits the current stock level and decides on deliveries for the next T periods, thus incurring a fixed audit cost and—when one schedules deliveries—a fixed order cost. The problem is to find a review period T and an ordering policy that satisfy the average cost criterion. The current article extends an earlier treatment of this problem, which assumed that the fixed order cost is automatically incurred once every T periods. We characterize an optimal ordering policy when T is fixed, prove that an optimal review period T** exists, and develop a global search algorithm for its computation. We also study the behavior of four approximations to T** based on the assumption that the fixed order cost is incurred during every cycle. Analytic results from a companion article (where μ/σ is large) and extensive computational experiments with normal and gamma demand test problems suggest these approximations and associated heuristic policies perform well when μ/σ ≥ 2. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 329–352, 2000  相似文献   

3.
The objective of this paper is to determine the optimum inventory policy for a multi-product periodic review dynamic inventory system. At the beginning of each period two decisions are made for each product. How much to “normal order” with a lead time of λn periods and how much to “emergency order” with a lead time of λe periods, where λe = λn - 1. It is assumed that the emergency ordering costs are higher than the normal ordering costs. The demands for each product in successive periods are assumed to form a sequence of independent identically distributed random variables with known densities. Demands for individual products within a period are assumed to be non-negative, but they need not be independent. Whenever demand exceeds inventory their difference is backlogged rather than lost. The ordering decisions are based on certain costs and two revenue functions. Namely, the procurement costs which are assumed to be linear for both methods of ordering, convex holding and penalty costs, concave salvage gain functions, and linear credit functions. There is a restriction on the total amount that can be emergency ordered for all products. The optimal ordering policy is determined for the one and N-period models.  相似文献   

4.
This paper presents a one-period two-echelon inventory model with one warehouse in the first echelon and n warehouses in the second echelon. At the beginning of the period the stock levels at all facilities are adjusted by purchasing or disposing of items at the first echelon, returning or shipping items between the echelons and transshipping items within the second echelon. During the period, demands (which may be negative) are placed on all warehouses in the second echelon and an attempt is made to satisfy shortages either by an expedited shipment from the first echelon to the second echelon or an expedited transshipment within the second echelon. The decision problem is to choose an initial stock level at the first echelon (by a purchase or a disposition) and an initial allocation so as to minimize the initial stock movement costs during the period plus inventory carrying costs and system shortage costs at the end of the period. It is shown that the objective function takes on one of four forms, depending on the relative magnitudes of the various shipping costs. All four forms of the objective function are derived and proven to be convex. Several applications of this general model are considered. We also consider multi-period extensions of the general model and an important special case is solved explicitly.  相似文献   

5.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

6.
A dynamic and nonstationary model is formulated for a firm which attempts to minimize total expected costs over a finite planning horizon. The control variables are price and production. The price p and the demand ζ are linked through the relationship ζ = g(p) + η, where g(p) is the riskless demand curve and η is a random variable. The general model allows for proportional ordering costs, convex holding and stockout costs, downward sloping riskless demand curve, backlogging, partial backlogging, lost sales, partial spoilage of inventory, and two modes of collecting revenue. Sufficient conditions are developed for this problem to have an optimal policy which resembles the single critical number policy known from stochastic inventory theory. It is also shown what set of parameters will satisfy these sufficiency conditions.  相似文献   

7.
We consider the coordination problem between a vendor and a buyer operating under generalized replenishment costs that include fixed costs as well as stepwise freight costs. We study the stochastic demand, single‐period setting where the buyer must decide on the order quantity to satisfy random demand for a single item with a short product life cycle. The full order for the cycle is placed before the cycle begins and no additional orders are accepted by the vendor. Due to the nonrecurring nature of the problem, the vendor's replenishment quantity is determined by the buyer's order quantity. Consequently, by using an appropriate pricing schedule to influence the buyer's ordering behavior, there is an opportunity for the vendor to achieve substantial savings from transportation expenses, which are represented in the generalized replenishment cost function. For the problem of interest, we prove that the vendor's expected profit is not increasing in buyer's order quantity. Therefore, unlike the earlier work in the area, it is not necessarily profitable for the vendor to encourage larger order quantities. Using this nontraditional result, we demonstrate that the concept of economies of scale may or may not work by identifying the cases where the vendor can increase his/her profits either by increasing or decreasing the buyer's order quantity. We prove useful properties of the expected profit functions in the centralized and decentralized models of the problem, and we utilize these properties to develop alternative incentive schemes for win–win solutions. Our analysis allows us to quantify the value of coordination and, hence, to identify additional opportunities for the vendor to improve his/her profits by potentially turning a nonprofitable transaction into a profitable one through the use of an appropriate tariff schedule or a vendor‐managed delivery contract. We demonstrate that financial gain associated with these opportunities is truly tangible under a vendor‐managed delivery arrangement that potentially improves the centralized solution. Although we take the viewpoint of supply chain coordination and our goal is to provide insights about the effect of transportation considerations on the channel coordination objective and contractual agreements, the paper also contributes to the literature by analyzing and developing efficient approaches for solving the centralized problem with stepwise freight costs in the single‐period setting. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

8.
This article explores ordering policies for inventory systems with three supply modes. This model is particularly interesting because the optimal ordering decision needs to balance the inventory and purchase costs, as well as the costs for earlier and later periods. The latter cost trade-off is present only in inventory systems with three or more supply modes. Therefore, the result not only offers guidelines for the operation of the concerned inventory systems, but also provides valuable insight into the complex cost trade-offs when more supply modes are available. We assume that the difference between the lead times is one period, and the inventory holding and shortage costs are linear. We analyze two cases and obtain the structure of the optimal ordering policy. Moreover, in the first case, explicit formulas are derived to calculate the optimal order-up-to levels. In the second case, although the optimal order-up-to levels are functions of the initial inventory state and are not obtained in closed form, their properties are discussed. We also develop heuristic ordering policies based on the news-vendor model. Our numerical experiments suggest that the heuristic policies perform reasonably well. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
In this article we explore how total system costs and inventory positions are affected when forecasts are incorporated explicitly in production/inventory systems. We assume that forecasts for demand of a certain item are available in each period, and they evolve from one period to the next in accordance with an additive evolution model. In order to analyze the effects of the forecasts on the production/inventory system we compare the optimal ordering policy and the expected costs of the model that keeps forecasts with that of a comparable standard inventory model. We show that under mild assumptions the former yields lower expected costs and inventory levels than the latter. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
This paper discusses the properties of the inventory and advertising policy minimizing the expected discounted cost over a finite horizon in a dynamic nonstationary inventory model with random demand which is influenced by the level of promotion or goodwill. Attention is focused on the relation between the fluctuations over time of the optimal policies and the variations over time of the factors involved, i.e., demand distributions and various costs. The optimal policies are proved to be monotone in the various factors. Also, three types of fluctuations over time of the optimal policies are discussed according to which factor varies over time. For example, if over a finite interval, the random demand increases (stochastically) from one period to the next, reaches a maximum and then decreases, then the optimal inventory level will do the same. Also the period of maximum of demand never precedes that of maximum inventory. The optimal advertising behaves in the opposite way and its minimum will occur at the same time as the maximum of the inventory. The model has a linear inventory ordering cost and instantaneous delivery of stocks; many results, however, are extended to models with a convex ordering cost or a delivery time lag.  相似文献   

11.
In multi-commodity inventory systems with variable setup costs, the mixed ordering policy assumes that commodities may be ordered either individually, or may be arbitrarily grouped for joint ordering. Thus, for a two-commodity system, commodity one or commodity two or commodities one and two may be ordered incurring respectively fixed order costs of K, K1, or K2, where max (K1, K2) ≤ K ≤ K1 + K2, This paper considers a two-commodity periodic review system. The stationary characteristics of the system are analyzed, and, for a special case, explicit solutions are obtained for the distribution of the stock levels at the beginning of the periods. In a numerical example, optimal policy variables are computed, and the mixed ordering policy is compared with individual and joint ordering policies.  相似文献   

12.
We address the problem of determining optimal ordering and pricing policies in a finite‐horizon newsvendor model with unobservable lost sales. The demand distribution is price‐dependent and involves unknown parameters. We consider both the cases of perishable and nonperishable inventory. A very general class of demand functions is studied in this paper. We derive the optimal ordering and pricing policies as unique functions of the stocking factor (which is a linear transformation of the safety factor). An important expression is obtained for the marginal expected value of information. As a consequence, we show when lost sales are unobservable, with perishable inventory the optimal stocking factor is always at least as large as the one given by the single‐period model; however, if inventory is nonperishable, this result holds only under a strong condition. This expression also helps to explain why the optimal stocking factor of a period may not increase with the length of the problem. We compare this behavior with that of a full information model. We further examine the implications of the results to the special cases when demand uncertainty is described by additive and multiplicative models. For the additive case, we show that if demand is censored, the optimal policy is to order more as well as charge higher retail prices when compared to the policies in the single‐period model and the full information model. We also compare the optimal and myopic policies for the additive and multiplicative models. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

13.
We consider a finite horizon periodic review, single product inventory system with a fixed setup cost and two stochastic demand classes that differ in their backordering costs. In each period, one must decide whether and how much to order, and how much demand of the lower class should be satisfied. We show that the optimal ordering policy can be characterized as a state dependent (s,S) policy, and the rationing structure is partially obtained based on the subconvexity of the cost function. We then propose a simple heuristic rationing policy, which is easy to implement and close to optimal for intensive numerical examples. We further study the case when the first demand class is deterministic and must be satisfied immediately. We show the optimality of the state dependent (s,S) ordering policy, and obtain additional rationing structural properties. Based on these properties, the optimal ordering and rationing policy for any state can be generated by finding the optimal policy of only a finite set of states, and for each state in this set, the optimal policy is obtained simply by choosing a policy from at most two alternatives. An efficient algorithm is then proposed. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

14.
It is well known that replacing several products by a single common product can reduce required safety stock levels due to the benefits of risk pooling. Recent research utilizing single‐period models has investigated the cost savings (or losses) from doing so. This paper uses a very general multiple‐period model, with general demand distributions, any number of products, and the objective of minimizing production, holding, and shortage costs. Two scenarios are considered—one that utilizes a common product and one that does not. Prior results utilizing single‐period models indicate that even if the common product is more expensive than the products it replaces, there are many circumstances under which it is still worthwhile to employ. Surprisingly, this paper will show that this is almost never the case in a multiple‐period model. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 737–751, 1999  相似文献   

15.
This paper describes a deterministic capacity-expansion model for two facility types with a finite number of discrete time periods. Capacity expansions are initialed either by new construction or by the conversion of idle capacity from one facility type to the other. Once converted, the capacity becomes an integral part of the new facility type. The costs incurred include construction, conversion, and holding costs. All cost functions are assumed to be nondecreasing and concave. Using a network flow approach, the paper develops an efficient dynamic-programming algorithm to minimize the total costs when the demands for additional capacity are nonnegative in each period. Thereafter, the algorithm is extended for arbitrary demands. The model is applied to a cable-sizing problem that occurs in communication networks, and numerical examples are discussed.  相似文献   

16.
This article addresses a single‐item, finite‐horizon, periodic‐review coordinated decision model on pricing and inventory control with capacity constraints and fixed ordering cost. Demands in different periods are random and independent of each other, and their distributions depend on the price in the current period. Each period's stochastic demand function is the additive demand model. Pricing and ordering decisions are made at the beginning of each period, and all shortages are backlogged. The objective is to find an optimal policy that maximizes the total expected discounted profit. We show that the profit‐to‐go function is strongly CK‐concave, and the optimal policy has an (s,S,P) ‐like structure. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

17.
This paper considers the problem of maintaining an inventory of an item which can deteriorate and become useless. A periodic review procedure is used and new items ordered may experience a time lag in delivery. Items are considered to deteriorate through one or two states before becoming useless. Thus the deterioration process in each period plays the role of the usual demand process and is a function of the inventory level at the beginning of each period. For the case of no time lag in delivery, one stage deterioration, and either binomial or uniform deterioration, optimal ordering policies are obtained for the n-period dynamic model with the standard cost structure. (For the shortage probability criterion see the other paper by Iglehart and Jaquette, in this issue.) These policies are of the single critical number type. For more complicated models suboptimal policies of this same type are found.  相似文献   

18.
Given a positive integer R and a weight for each vertex in a graph, the maximum-weight connected graph problem (MCG) is to find a connected subgraph with R vertices that maximizes the sum of their weights. MCG has applications to communication network design and facility expansion. The constrained MCG (CMCG) is MCG with a constraint that one predetermined vertex must be included in the solution. In this paper, we introduce a class of decomposition algorithms for MCG. These algorithms decompose MCG into a number of small CMCGs by adding vertices one at a time and building a partial graph. They differ in the ordering of adding vertices. Proving that finding an ordering that gives the minimum number of CMCGs is NP-complete, we present three heuristic algorithms. Experimental results show that these heuristics are very effective in reducing computation and that different orderings can significantly affect the number of CMCGs to be solved. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 817–837, 1998  相似文献   

19.
A classical and important problem in stochastic inventory theory is to determine the order quantity (Q) and the reorder level (r) to minimize inventory holding and backorder costs subject to a service constraint that the fill rate, i.e., the fraction of demand satisfied by inventory in stock, is at least equal to a desired value. This problem is often hard to solve because the fill rate constraint is not convex in (Q, r) unless additional assumptions are made about the distribution of demand during the lead‐time. As a consequence, there are no known algorithms, other than exhaustive search, that are available for solving this problem in its full generality. Our paper derives the first known bounds to the fill‐rate constrained (Q, r) inventory problem. We derive upper and lower bounds for the optimal values of the order quantity and the reorder level for this problem that are independent of the distribution of demand during the lead time and its variance. We show that the classical economic order quantity is a lower bound on the optimal ordering quantity. We present an efficient solution procedure that exploits these bounds and has a guaranteed bound on the error. When the Lagrangian of the fill rate constraint is convex or when the fill rate constraint does not exist, our bounds can be used to enhance the efficiency of existing algorithms. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 635–656, 2000  相似文献   

20.
Models are formulated for determining continuous review (Q, r) policies for a multiitem inventory subject to constraints. The objective function is the minimization of total time-weighted shortages. The constraints apply to inventory investment and reorder workload. The formulations are thus independent of the normal ordering, holding, and shortage costs. Two models are presented, each representing a convex programming problem. Lagrangian techniques are employed with the first, simplified model in which only the reorder points are optimized. In the second model both the reorder points and the reorder quantities are optimized utilizing penalty function methods. An example problem is solved for each model. The final section deals with the implementation of these models in very large inventory systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号