首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
A simultaneous non‐zero‐sum game is modeled to extend the classical network interdiction problem. In this model, an interdictor (e.g., an enforcement agent) decides how much of an inspection resource to spend along each arc in the network to capture a smuggler. The smuggler (randomly) selects a commodity to smuggle—a source and destination pair of nodes, and also a corresponding path for traveling between the given pair of nodes. This model is motivated by a terrorist organization that can mobilize its human, financial, or weapon resources to carry out an attack at one of several potential target destinations. The probability of evading each of the network arcs nonlinearly decreases in the amount of resource that the interdictor spends on its inspection. We show that under reasonable assumptions with respect to the evasion probability functions, (approximate) Nash equilibria of this game can be determined in polynomial time; depending on whether the evasion functions are exponential or general logarithmically‐convex functions, exact Nash equilibria or approximate Nash equilibria, respectively, are computed. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 139–153, 2017  相似文献   

2.
The contest-theoretic literature on the attack and defense of networks of targets focuses primarily on pure-strategy Nash equilibria. Hausken's 2008 European Journal of Operational Research article typifies this approach, and many of the models in this literature either build upon this model or utilize similar techniques. We show that Hausken's characterization of Nash equilibrium is invalid for much of the parameter space examined and provides necessary conditions for his solution to hold. The complete characterization of mixed-strategy equilibria remains an open problem, although there exist solutions in the literature for special prominent cases.  相似文献   

3.
We study competitive due‐date and capacity management between the marketing and engineering divisions within an engineer‐to‐order (ETO) firm. Marketing interacts directly with the customers and quotes due‐dates for their orders. Engineering is primarily concerned with the efficient utilization of resources and is willing to increase capacity if the cost is compensated. The two divisions share the responsibility for timely delivery of the jobs. We model the interaction between marketing and engineering as a Nash game and investigate the effect of internal competition on the equilibrium decisions. We observe that the internal competition not only degrades the firm's overall profitability but also the serviceability. Finally, we extend our analysis to multiple‐job settings that consider both flexible and inflexible capacity. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

4.
This article uses game theoretic concepts to analyze the inventory problem with two substitutable products having random demands. It is assumed that the two decision makers (players) who make ordering decisions know the substitution rates and the demand densities for both products. Since each player's decision affects the other's single-period expected profit, game theory is used to find the order quantities when the players use a Nash strategy (i.e., they act rationally). We prove the existence and uniqueness of the Nash solution. It is also shown that when one of the players acts irrationally for the sole purpose of inflicting maximum damage on the other, the maximin strategy for the latter reduces to using the solution for the classical single-period inventory problem. We also discuss the cooperative game and prove that the players always gain if they cooperate and maximize a joint objective function.  相似文献   

5.
This article discusses a two‐player noncooperative nonzero‐sum inspection game. There are multiple sites that are subject to potential inspection by the first player (an inspector). The second player (potentially a violator) has to choose a vector of violation probabilities over the sites, so that the sum of these probabilities do not exceed one. An efficient method is introduced to compute all Nash equilibria parametrically in the amount of resource that is available to the inspector. Sensitivity analysis reveals nonmonotonicity of the equilibrium utility of the inspector, considered as a function of the amount of resource that is available to it; a phenomenon which is a variant of the well‐known Braess paradox. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

6.
In this article we explore how two competing firms locate and set capacities to serve time‐sensitive customers. Because customers are time‐sensitive, they may decline to place an order from either competitor if their expected waiting time is large. We develop a two‐stage game where firms set capacities and then locations, and show that three types of subgame perfect equilibria are possible: local monopoly (in which each customer is served by a single firm, but some customers may be left unserved), constrained local monopoly (in which firms serve the entire interval of customers but do not compete with each other), and constrained competition (in which firms also serve the entire interval of customers, but now compete for some customers). We perform a comparative statics analysis to illustrate differences in the equilibrium behavior of a duopolist and a coordinated monopolist. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

7.
Consider a distributed system where many gatekeepers share a single server. Customers arrive at each gatekeeper according to independent Poisson processes with different rates. Upon arrival of a new customer, the gatekeeper has to decide whether to admit the customer by sending it to the server, or to block it. Blocking costs nothing. The gatekeeper receives a reward after a customer completes the service, and incurs a cost if an admitted customer finds a busy server and therefore has to leave the system. Assuming an exponential service distribution, we formulate the problem as an n‐person non‐zero‐sum game in which each gatekeeper is interested in maximizing its own long‐run average reward. The key result is that each gatekeeper's optimal policy is that of a threshold type regardless what other gatekeepers do. We then derive Nash equilibria and discuss interesting insights. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 702–718, 2003.  相似文献   

8.
We study the competition problem of purchase and multiretrieval of perishable seasonal produce, where wholesalers purchase and stock their products in the first period, and then retrieve and sell them in subsequent periods. We first consider the duopoly case and assume that the prices are exogenous and fluctuate. In each period, after the price realization, the wholesalers retrieve some stock from their warehouses to satisfy their demands. One wholesaler's unsatisfied customers can switch to another and be satisfied by its left retrieved products. Any unsold retrieved stock has no salvage value and any unsatisfied demand is lost. The unretrieved stock is carried to the next period at a perishable rate. The wholesalers compete for the substitute demand by determining their own purchase and retrieval quantities. We show the existence and uniqueness of a pure-strategy Nash equilibrium, and that the Nash equilibrium strategy has the simple “sell-down-to” structure. We also consider the general N-person game and show the existence of the Nash equilibrium, and characterize the structure of the equilibrium strategy for the symmetric case. In addition, we consider the case with endogenous prices, and show that the problem reduces to a repeated newsvendor game with price and inventory competition. We derive the conditions under which a unique Nash equilibrium exists and characterize the equilibrium strategy. Finally, we conduct numerical studies to examine the impacts of the model parameters on the equilibrium outcomes and to generate managerial insights.  相似文献   

9.
针对网络攻防环境中防御方以提高系统生存能力为目的所进行的最优生存防御策略的选取问题,提出了一种基于完全信息动态博弈理论的生存防御策略优化配置算法。将恶意攻击方、故障意外事件及防御方作为博弈的参与人,提出了一种混合战略模式下的三方动态博弈模型,对博弈的主要信息要素进行了说明,以混合战略纳什均衡理论为基础,将原纳什均衡条件式的表达式转化为可计算数值结果的表达式,并据此增加了近似的概念,最后,将提出的模型和近似纳什均衡求解算法应用到一个网络实例中,结果证明了模型和算法的可行性和有效性。  相似文献   

10.
This article provides a new approach to the set of (perfect) equilibria. With the help of an equivalence relation on the strategy space of each player. Nash sets and Selten sets are introduced. The number of these sets is finite and each of these sets is a polytope. As a consequence the set of (perfect) equilibria is a finite union of polytopes. © 1994 John Wiley & Sons. Inc.  相似文献   

11.
简要介绍了军事虚拟仓库及其组织结构形式.以及博弈论的相关知识。结合军事后勤系统的特点,采用完全信息静态博弈纳什均衡的方法分析了军事虚拟仓库的组织结构模式,在假设的合理的条件下模拟3种组织形式的博弈过程。通过各个模型的最终纳什均衡,指出了3种组织结构形式运作的结果和其积极因素、消极因素、噪声构成.结合我军现有的后勤保障体制,提出现行保障体制的合理与不合理的地方,并给出了改进方案,对优化全军后方仓库布局及管理和战备物资储备及应急保障有着重要意义,可以为总部决策提供咨询建议。  相似文献   

12.
In this paper we study a capacity allocation problem for two firms, each of which has a local store and an online store. Customers may shift among the stores upon encountering a stockout. One question facing each firm is how to allocate its finite capacity (i.e., inventory) between its local and online stores. One firm's allocation affects the decision of the rival, thereby creating a strategic interaction. We consider two scenarios of a single‐product single‐period model and derive corresponding existence and stability conditions for a Nash equilibrium. We then conduct sensitivity analysis of the equilibrium solution with respect to price and cost parameters. We also prove the existence of a Nash equilibrium for a generalized model in which each firm has multiple local stores and a single online store. Finally, we extend the results to a multi‐period model in which each firm decides its total capacity and allocates this capacity between its local and online stores. A myopic solution is derived and shown to be a Nash equilibrium solution of a corresponding “sequential game.” © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

13.
This article studies a firm that procures a product from a supplier. The quality of each product unit is measured by a continuous variable that follows a normal distribution and is correlated within a batch. The firm conducts an inspection and pays the supplier only if the product batch passes the inspection. The inspection not only serves the purpose of preventing a bad batch from reaching customers but also offers the supplier an incentive to improve product quality. The firm determines the acceptance sampling plan, and the supplier determines the quality effort level in either a simultaneous game or a Stackelberg leadership game, in which both parties share inspection cost and recall loss caused by low product quality. In the simultaneous game, we identify the Nash equilibrium form, provide sufficient conditions that guarantee the existence of a pure strategy Nash equilibrium, and find parameter settings under which the decentralized and centralized supply chains achieve the same outcome. By numerical experiments, we show that the firm's acceptance sampling plan and the supplier's quality effort level are sensitive to both the recall loss sharing ratio and the game format (i.e., the precommitment assumption of the inspection policy). © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

14.
In this work maximal Nash subsets are studied in order to show that the set of equilibrium points of a bimatrix game is the finite union of all such subsets. In addition, the extreme points of maximal Nash subsets are characterized in terms of square submatrices of the payoff matrices and dimension relations are derived.  相似文献   

15.
In this study, we consider n firms, each of which produces and sells a different product. The n firms face a common demand stream which requests all their products as a complete set. In addition to the common demand stream, each firm also faces a dedicated demand stream which requires only its own product. The common and dedicated demands are uncertain and follow a general, joint, continuous distribution. Before the demands are realized, each firm needs to determine its capacity or production quantity to maximize its own expected profit. We formulate the problem as a noncooperative game. The sales price per unit for the common demand could be higher or lower than the unit price for the dedicated demand, which affects the firm's inventory rationing policy. Hence, the outcome of the game varies. All of the prices are first assumed to be exogenous. We characterize Nash equilibrium(s) of the game. At the end of the article, we also provide some results for the endogenous pricing. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 59: 146–159, 2012  相似文献   

16.
We study the problem of capacity exchange between two firms in anticipation of the mismatch between demand and capacity, and its impact on firm's capacity investment decisions. For given capacity investment levels of the two firms, we demonstrate how capacity price may be determined and how much capacity should be exchanged when either manufacturer acts as a Stackelberg leader in the capacity exchange game. By benchmarking against the centralized system, we show that a side payment may be used to coordinate the capacity exchange decisions. We then study the firms' capacity investment decisions using a biform game framework in which capacity investment decisions are made individually and exchange decisions are made as in a centralized system. We demonstrate the existence and uniqueness of the Nash equilibrium capacity investment levels and study the impact of firms' share of the capacity exchange surplus on their capacity investment levels.© 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

17.
A defender wants to detect as quickly as possible whether some attacker is secretly conducting a project that could harm the defender. Security services, for example, need to expose a terrorist plot in time to prevent it. The attacker, in turn, schedules his activities so as to remain undiscovered as long as possible. One pressing question for the defender is: which of the project's activities to focus intelligence efforts on? We model the situation as a zero‐sum game, establish that a late‐start schedule defines a dominant attacker strategy, and describe a dynamic program that yields a Nash equilibrium for the zero‐sum game. Through an innovative use of cooperative game theory, we measure the harm reduction thanks to each activity's intelligence effort, obtain insight into what makes intelligence effort more effective, and show how to identify opportunities for further harm reduction. We use a detailed example of a nuclear weapons development project to demonstrate how a careful trade‐off between time and ease of detection can reduce the harm significantly.  相似文献   

18.
Substitutable product inventory problem is analyzed using the concepts of stochastic game theory. It is assumed that there are two substitutable products that are sold by different retailers and the demand for each product is random. Game theoretic nature of this problem is the result of substitution between products. Since retailers compete for the substitutable demand, ordering decision of each retailer depends on the ordering decision of the other retailer. Under the discounted payoff criterion, this problem is formulated as a two‐person nonzero‐sum stochastic game. In the case of linear ordering cost, it is shown that there exists a Nash equilibrium characterized by a pair of stationary base stock strategies for the infinite horizon problem. This is the unique Nash equilibrium within the class of stationary base stock strategies. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 359–375, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10018  相似文献   

19.
When an unreliable supplier serves multiple retailers, the retailers may compete with each other by inflating their order quantities in order to obtain their desired allocation from the supplier, a behavior known as the rationing game. We introduce capacity information sharing and a capacity reservation mechanism in the rationing game and show that a Nash equilibrium always exists. Moreover, we provide conditions guaranteeing the existence of the reverse bullwhip effect upstream, a consequence of the disruption caused by the supplier. In contrast, we also provide conditions under which the bullwhip effect does not exist. In addition, we show that a smaller unit reservation payment leads to more bullwhip and reverse bullwhip effects, while a large unit underage cost results in a more severe bullwhip effect. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 203–216, 2017  相似文献   

20.
Decentralized decision‐making in supply chain management is quite common, and often inevitable, due to the magnitude of the chain, its geographical dispersion, and the number of agents that play a role in it. But, decentralized decision‐making is known to result in inefficient Nash equilibrium outcomes, and optimal outcomes that maximize the sum of the utilities of all agents need not be Nash equilibria. In this paper we demonstrate through several examples of supply chain models how linear reward/penalty schemes can be implemented so that a given optimal solution becomes a Nash equilibrium. The examples represent both vertical and horizontal coordination issues. The techniques we employ build on a general framework for the use of linear reward/penalty schemes to induce stability in given optimal solutions and should be useful to other multi‐agent operations management settings. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号