首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Consider a monopolist who sells a single product to time‐sensitive customers located on a line segment. Customers send their orders to the nearest distribution facility, where the firm processes (customizes) these orders on a first‐come, first‐served basis before delivering them. We examine how the monopolist would locate its facilities, set their capacities, and price the product offered to maximize profits. We explicitly model customers' waiting costs due to both shipping lead times and queueing congestion delays and allow each customer to self‐select whether she orders or not, based on her reservation price. We first analyze the single‐facility problem and derive a number of interesting insights regarding the optimal solution. We show, for instance, that the optimal capacity relates to the square root of the customer volume and that the optimal price relates additively to the capacity and transportation delay costs. We also compare our solutions to a similar problem without congestion effects. We then utilize our single‐facility results to treat the multi‐facility problem. We characterize the optimal policy for serving a fixed interval of customers from multiple facilities when customers are uniformly distributed on a line. We also show how as the length of the customer interval increases, the optimal policy relates to the single‐facility problem of maximizing expected profit per unit distance. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

2.
The two-echelon uncapacitated facility location problem (TUFLP) is a generalization of the uncapacitated facility location problem (UFLP) and multiactivity facility location problem (MAFLP). In TUFLP there are two echelons of facilities through which products may flow in route to final customers. The objective is to determine the least-cost number and locations of facilities at each echelon in the system, the flow of product between facilities, and the assignment of customers to supplying facilities. We propose a new dual-based solution procedure for TUFLP that can be used as a heuristic or incorporated into branch-and-bound procedures to obtain optimal solutions to TUFLP. The algorithm is an extension of the dual ascent and adjustment procedures developed by Erlenkotter for UFLP. We report computational experience gained by solving over 420 test problems. The largest problems solved have 25 possible facility locations at each echelon and 35 customer zones, implying 650 integer variables and 21,875 continuous variables.  相似文献   

3.
Quantity discounts are considered in the context of the single-period inventory model known as “the newsboy problem.” It is argued that the behavioral implications of the all-units discount schedule are more complex and interesting than the literature has suggested. Consideration of this behavior and the use of marginal analysis lead to a new method for solving this problem that is both conceptually simpler and more efficient than the traditional approach. This marginal-cost solution procedure is described graphically, an algorithm is presented, and an example is used to demonstrate that this solution procedure can be extended easily to handle complex discount schedules, such as some combined (simultaneously applied) purchasing and transportation cost discount schedules.  相似文献   

4.
In this article we develop a heuristic procedure for a multiproduct dynamic lot-sizing problem. In this problem a joint setup cost is incurred when at least one product is ordered in a period. In addition to the joint setup cost a separate setup cost for each product ordered is also incurred. The objective is to determine the product lot sizes, over a finite planning horizon, that will minimize the total relevant cost such that the demand in each period for each product is satisfied without backlogging. In this article we present an effective heuristic procedure for this problem. Computational results for the heuristic procedure are also reported. Our computational experience leads us to conclude that the heuristic procedure may be of considerable value as a decision-making aid to production planners in a real-world setting. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Many organizations providing service support for products or families of products must allocate inventory investment among the parts (or, identically, items) that make up those products or families. The allocation decision is crucial in today's competitive environment in which rapid response and low levels of inventory are both required for providing competitive levels of customer service in marketing a firm's products. This is particularly important in high-tech industries, such as computers, military equipment, and consumer appliances. Such rapid response typically implies regional and local distribution points for final products and for spare parts for repairs. In this article we fix attention on a given product or product family at a single location. This single-location problem is the basic building block of multi-echelon inventory systems based on level-by-level decomposition, and our modeling approach is developed with this application in mind. The product consists of field-replaceable units (i.e., parts), which are to be stocked as spares for field service repair. We assume that each part will be stocked at each location according to an (s, S) stocking policy. Moreover, we distinguish two classes of demand at each location: customer (or emergency) demand and normal replenishment demand from lower levels in the multiechelon system. The basic problem of interest is to determine the appropriate policies (si Si) for each part i in the product under consideration. We formulate an approximate cost function and service level constraint, and we present a greedy heuristic algorithm for solving the resulting approximate constrained optimization problem. We present experimental results showing that the heuristics developed have good cost performance relative to optimal. We also discuss extensions to the multiproduct component commonality problem.  相似文献   

6.
We consider the optimal control of a production inventory‐system with a single product and two customer classes where items are produced one unit at a time. Upon arrival, customer orders can be fulfilled from existing inventory, if there is any, backordered, or rejected. The two classes are differentiated by their backorder and lost sales costs. At each decision epoch, we must determine whether or not to produce an item and if so, whether to use this item to increase inventory or to reduce backlog. At each decision epoch, we must also determine whether or not to satisfy demand from a particular class (should one arise), backorder it, or reject it. In doing so, we must balance inventory holding costs against the costs of backordering and lost sales. We formulate the problem as a Markov decision process and use it to characterize the structure of the optimal policy. We show that the optimal policy can be described by three state‐dependent thresholds: a production base‐stock level and two order‐admission levels, one for each class. The production base‐stock level determines when production takes place and how to allocate items that are produced. This base‐stock level also determines when orders from the class with the lower shortage costs (Class 2) are backordered and not fulfilled from inventory. The order‐admission levels determine when orders should be rejected. We show that the threshold levels are monotonic (either nonincreasing or nondecreasing) in the backorder level of Class 2. We also characterize analytically the sensitivity of these thresholds to the various cost parameters. Using numerical results, we compare the performance of the optimal policy against several heuristics and show that those that do not allow for the possibility of both backordering and rejecting orders can perform poorly.© 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

7.
We address a single-machine scheduling problem in which penalties are assigned for early and tardy completion of jobs. These penalties are common in industrial settings where early job completion can cause the cash commitment to resources in a time frame earlier than needed, giving rise to early completion penalties. Tardiness penalties arise from a variety of sources, such as loss of customer goodwill, opportunity costs of lost sales, and direct cash penalties. Accounting for earliness cost makes the performance measure nonregular, and this nonregularity has apparently discouraged researchers from seeking solutions to this problem. We found that it is not much more difficult to design an enumerative search for this problem than it would be if the performance measure were regular. We present and demonstrate an efficient timetabling procedure which can be embedded in an enumerative algorithm allowing the search to be conducted over the domain of job permutations.© 1993 John Wiley & Sons, Inc.  相似文献   

8.
This paper develops a new model for allocating demand from retailers (or customers) to a set of production/storage facilities. A producer manufactures a product in multiple production facilities, and faces demand from a set of retailers. The objective is to decide which of the production facilities should satisfy each retailer's demand, in order minimize total production, inventory holding, and assignment costs (where the latter may include, for instance, variable production costs and transportation costs). Demand occurs continuously in time at a deterministic rate at each retailer, while each production facility faces fixed‐charge production costs and linear holding costs. We first consider an uncapacitated model, which we generalize to allow for production or storage capacities. We then explore situations with capacity expansion opportunities. Our solution approach employs a column generation procedure, as well as greedy and local improvement heuristic approaches. A broad class of randomly generated test problems demonstrates that these heuristics find high quality solutions for this large‐scale cross‐facility planning problem using a modest amount of computation time. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

9.
In Assemble‐To‐Order (ATO) systems, situations may arise in which customer demand must be backlogged due to a shortage of some components, leaving available stock of other components unused. Such unused component stock is called remnant stock. Remnant stock is a consequence of both component ordering decisions and decisions regarding allocation of components to end‐product demand. In this article, we examine periodic‐review ATO systems under linear holding and backlogging costs with a component installation stock policy and a First‐Come‐First‐Served (FCFS) allocation policy. We show that the FCFS allocation policy decouples the problem of optimal component allocation over time into deterministic period‐by‐period optimal component allocation problems. We denote the optimal allocation of components to end‐product demand as multimatching. We solve the multi‐matching problem by an iterative algorithm. In addition, an approximation scheme for the joint replenishment and allocation optimization problem with both upper and lower bounds is proposed. Numerical experiments for base‐stock component replenishment policies show that under optimal base‐stock policies and optimal allocation, remnant stock holding costs must be taken into account. Finally, joint optimization incorporating optimal FCFS component allocation is valuable because it provides a benchmark against which heuristic methods can be compared. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 158–169, 2015  相似文献   

10.
Consider a distributed system where many gatekeepers share a single server. Customers arrive at each gatekeeper according to independent Poisson processes with different rates. Upon arrival of a new customer, the gatekeeper has to decide whether to admit the customer by sending it to the server, or to block it. Blocking costs nothing. The gatekeeper receives a reward after a customer completes the service, and incurs a cost if an admitted customer finds a busy server and therefore has to leave the system. Assuming an exponential service distribution, we formulate the problem as an n‐person non‐zero‐sum game in which each gatekeeper is interested in maximizing its own long‐run average reward. The key result is that each gatekeeper's optimal policy is that of a threshold type regardless what other gatekeepers do. We then derive Nash equilibria and discuss interesting insights. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 702–718, 2003.  相似文献   

11.
In the classical EPQ model with continuous and constant demand, holding and setup costs are minimized when the production rate is no larger than the demand rate. However, the situation may change when demand is lumpy. We consider a firm that produces multiple products, each having a unique lumpy demand pattern. The decision involves determining both the lot size for each product and the allocation of resources for production rate improvements among the products. We find that each product's optimal production policy will take on only one of two forms: either continuous production or lot‐for‐lot production. The problem is then formulated as a nonlinear nonsmooth knapsack problem among products determined to be candidates for resource allocation. A heuristic procedure is developed to determine allocation amounts. The procedure decomposes the problem into a mixed integer program and a nonlinear convex resource allocation problem. Numerical tests suggest that the heuristic performs very well on average compared to the optimal solution. Both the model and the heuristic procedure can be extended to allow the company to simultaneously alter both the production rates and the incoming demand lot sizes through quantity discounts. Extensions can also be made to address the case where a single investment increases the production rate of multiple products. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

12.
The scheduling problem addressed in this paper concerns a manufacturer who produces a variety of product types and operates in a make‐to‐order environment. Each customer order consists of known quantities of the different product types, and must be delivered as a single shipment. Periodically the manufacturer schedules the accumulated and unscheduled customer orders. Instances of this problem occur across industries in manufacturing as well as in service environments. In this paper we show that the problem of minimizing the weighted sum of customer order delivery times is unary NP‐hard. We characterize the optimal schedule, solve several special cases of the problem, derive tight lower bounds, and propose several heuristic solutions. We report the results of a set of computational experiments to evaluate the lower bounding procedures and the heuristics, and to determine optimal solutions. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

13.
Optimizing the selection of resources to accomplish a set of tasks involves evaluating the tradeoffs between the cost of maintaining the resources necessary to accomplish the tasks and the penalty cost associated with unfinished tasks. We consider the case where resources are categorized into types, and limits (capacity) are imposed on the number of each type that can be selected. The objective is to minimize the sum of penalty costs and resource costs. This problem has several practical applications including production planning, new product design, menu selection and inventory management. We develop a branch‐and‐bound algorithm to find exact solutions to the problem. To generate bounds, we utilize a dual ascent procedure which exploits the special structure of the problem. Information from the dual and recovered primal solutions are used to select branching variables. We generate strong valid inequalities and use them to fix other variables at each branching step. Results of tests performed on reasonably sized problems are presented. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 19–37, 1999  相似文献   

14.
A posynomial geometric programming problem formulated so that the number of objective function terms is equal to the number of primal variables will have a zero degree of difficulty when augmented by multiplying each constraint term by a slack variable and including a surrogate constraint composed of the product of the slack variables, each raised to an undetermined negative exponent or surrogate multiplier. It is assumed that the original problem is canonical. The exponents in the constraint on the product of the slack variables must be estimated so that the associated solution to the augmented problem, obtained immediately, also solves the original problem. An iterative search procedure for finding the required exponents, thus solving the original problem, is described. The search procedure has proven quite efficient, often requiring only two or three iterations per degree of difficulty of the original problem. At each iteration the well-known procedure for solving a geometric programming problem with a zero degree of difficulty is used and so computations are simple. The solution generated at each iteration is optimal for a problem which differs from the original problem only in the values of some of the constraint coefficients, so intermediate solutions provide useful information.  相似文献   

15.
In the apparel industry, vendors often suffer from high mismatches in supply and demand. To cope with this problem, they procure the same style product from different suppliers with different manufacturing costs. Especially in the quick response environment, which allows vendors to monitor trends in customer demand and search for available suppliers through the electronic market, they have additional opportunities to improve their decision‐making. In this paper, we propose an analytical profit maximization model and develop efficient decision tools to help both the middle and lower level managers pursuing this strategy. Furthermore, we have shown how significantly the vendors' potential competitive edge can be improved by exploiting multiple supply options, even at the expense of high premium procurement costs for late orders. The effect is critical, especially in a highly competitive market, and it has important implications for the top managers. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

16.
This paper considers the production of two products with known demands over a finite set of periods. The production and inventory carrying costs for each product are assumed to be concave. We seek the minimum cost production schedule meeting all demands, without backlogging, assuming that at most one of the two products can be produced in any period. The optimization problem is first stated as a nonlinear programming problem, which allows the proof of a result permitting the search for the optimal policy to be restricted to those which produce a product only when its inventory level is zero. A dynamic programming formulation is given and the model is then formulated as a shortest route problem in a specially constructed network.  相似文献   

17.
This paper considers a new class of scheduling problems arising in logistics systems in which two different transportation modes are available at the stage of product delivery. The mode with the shorter transportation time charges a higher cost. Each job ordered by the customer is first processed in the manufacturing facility and then transported to the customer. There is a due date for each job to arrive to the customer. Our approach integrates the machine scheduling problem in the manufacturing stage with the transportation mode selection problem in the delivery stage to achieve the global maximum benefit. In addition to studying the NP‐hard special case in which no tardy job is allowed, we consider in detail the problem when minimizing the sum of the total transportation cost and the total weighted tardiness cost is the objective. We provide a branch and bound algorithm with two different lower bounds. The effectiveness of the two lower bounds is discussed and compared. We also provide a mathematical model that is solvable by CPLEX. Computational results show that our branch and bound algorithm is more efficient than CPLEX. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

18.
The segregated storage problem involves the optimal distribution of products among compartments with the restriction that only one product may be stored in each compartment. The storage capacity of each compartment, the storage demand for each product, and the linear cost of storing one unit of a product in a given compartment are specified. The problem is reformulated as a large set-packing problem, and a column generation scheme is devised to solve the associated linear programming problem. In case of fractional solutions, a branch and bound procedure is utilized. Computational results are presented.  相似文献   

19.
Two issues of frequent importance in new product development are product improvement and reliability testing. A question often faced by the developer is: Should the product be distributed in its present state, or should it be improved further and/or tested before distribution? A more useful statement of the question might be: What levels of investment in further improvement and testing are economically permissible? Products for which this question is relevant may vary widely in type and intended use. This paper presents a model for determining these levels for one such product—an equipment modification procedure. The model presented makes use of present value analysis to compare cost streams and of Bayesian statistics to relate the costs to various outcomes under conditions of uncertainty. The model is applied to an actual military problem and a method is described for examining the sensitivity of the results to changes in the prior probabilities and discount rate.  相似文献   

20.
We consider a class of facility location problems with a time dimension, which requires assigning every customer to a supply facility in each of a finite number of periods. Each facility must meet all assigned customer demand in every period at a minimum cost via its production and inventory decisions. We provide exact branch‐and‐price algorithms for this class of problems and several important variants. The corresponding pricing problem takes the form of an interesting class of production planning and order selection problems. This problem class requires selecting a set of orders that maximizes profit, defined as the revenue from selected orders minus production‐planning‐related costs incurred in fulfilling the selected orders. We provide polynomial‐time dynamic programming algorithms for this class of pricing problems, as well as for generalizations thereof. Computational testing indicates the advantage of our branch‐and‐price algorithm over various approaches that use commercial software packages. These tests also highlight the significant cost savings possible from integrating location with production and inventory decisions and demonstrate that the problem is rather insensitive to forecast errors associated with the demand streams. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号