首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of sequencing jobs on parallel processors when jobs have different available times, due dates, penalty costs and waiting costs is considered. The processors are identical and are available when the earliest job becomes available and continuously thereafter. There is a processor cost during the period when the processor is available for processing jobs. The proposed algorithm finds the sequence (or sequences) with minimum total cost (sum of waiting, penalty and processor costs.). A proof of the algorithm and numerical results are given.  相似文献   

2.
The problem considered in this article is a generalization of the familiar makespan problem, in which n jobs are allocated among m parallel processors, so as to minimize the maximum time (or cost) on any processor. Our problem is more general, in that we allow the processors to have (a) different initial costs, (b) different utilization levels before new costs are incurred, and (c) different rates of cost increase. A heuristic adapted from the bin-packing problem is shown to provide solutions which are close to optimal as the number of iterations is allowed to increase. Computational testing, over a large number of randomly generated problem instances, suggests that heuristic errors are, on average, very small.  相似文献   

3.
The problem of minimizing mean flow time of two parallel processors is discussed. Prior results are briefly reviewed. A dynamic programming algorithm is presented which minimizes mean flow time for a set of n preordered jobs on two nonequivalent parallel processors. The algorithm is illustrated with an example problem. The computational experience is presented which illustrates the efficiency of the algorithm.  相似文献   

4.
A recent article in this journal by Mehta, Chandrasekaran, and Emmons [1] described a dynamic programming algorithm for assigning jobs to two identical parallel processors in a way that minimizes the average delay of these jobs. Their problem has a constraint on the sequence of the jobs such that any group of jobs assigned to a processor must be processed in the order of the sequence. This note has two purposes. First, we wish to point out a relationship between this work and some prior work [2]. Second, we wish to point out that Mehta, Chandrasekaran, and Emmons formulation, slightly generalized, can be used to find the optimum assignment of jobs to two machines in a more general class of problems than they considered including a subclass in which the jobs are not constrained to be processed in a given sequence.  相似文献   

5.
This article concerns the scheduling of n jobs around a common due date, so as to minimize the average total earliness plus total lateness of the jobs. Optimality conditions for the problem are developed, based on its equivalence to an easy scheduling problem. It seems that this problem inherently has a huge number of optimal solutions and an algorithm is developed to find many of them. The model is extended to allow for the availability of multiple parallel processors and an efficient algorithm is developed for that problem. In this more general case also, the algorithm permits great flexibility in finding an optimal schedule.  相似文献   

6.
In this article our objective is to evaluate the performance of a WSPT (weighted shortest processing time) rule for scheduling n independent jobs where the resources to process these jobs vary over time and a job can be processed by several processors simultaneously. This problem was raised by Baker and Nuttle [2]. A linear-programming (LP) model is formulated to obtain a lower bound on the minimum value of the weighted completion times. The purpose of the model is to provide a basis for evaluating the WSPT heuristic. 1000 experiments were performed using different resource profiles to test the performance of WSPT. Using WSPT, the weighted completion times were found to be, on the average, 0.2% away from their LP lower bounds.  相似文献   

7.
We consider the problem of scheduling customer orders, each consisting of one or more individual jobs, on a set of parallel processors with the objective of minimizing average order completion time. We provide simple intuitive heuristics to guide managers in this environment and introduce lower bounds that show that these heuristics are effective for a wide variety of problems. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
The problem considered is to assign n jobs to two processors so as to minimize the total flow time, with the constraint that a predetermined partial ordering (induced by batch arrivals) must be preserved within the subset of jobs assigned to each processor. An efficient algorithm of time 0(n5) is developed, and computational experience is reported.  相似文献   

9.
Currently, both the hardware and software designs of many large computing systems aim at improved system performance through exploitation of parallelism in multiprocessor systems. In studying these systems, mathematical modelling and analysis constitute an important step towards providing design tools that can be used in building such systems. With this view the present paper describes a queueing model of a multiprocessor system operating in a job-shop environment in which arriving jobs consist of a random number of segments (sub-jobs). Two service disciplines are considered: one assumes that the sub-jobs of a given job are capable of parallel operation on different processors while the other assumes that the same sub-jobs must be operated in a strictly serial sequ'snce. The results (in particular, the mean number in the system and waiting time in queue) obtained for these two disciplines are shown to be bounds for more general job structures.  相似文献   

10.
Kanet addressed the problem of scheduling n jobs on one machine so as to minimize the sum of absolute lateness under a restrictive assumption on their common due date. This article extends the results to the problem of scheduling n jobs on m parallel identical processors in order to minimize the sum of absolute lateness. Also, a heuristic algorithm for a more general version with no restriction on the common due date, for the problem of n-job single-machine scheduling is presented and its performance is reported.  相似文献   

11.
We consider the problem of scheduling a set of jobs on a single machine where the release time of a job is related to the amount of resource consumed. The objective is to minimize the total resource consumption with a control on the completion times of the jobs. Four different variants of the problem are studied: (i) minimization of the total resource consumption subject to a common deadline for all jobs, (ii) minimization of the total resource consumption subject to a constraint on the total completion time of the jobs, (iii) minimization of the weighted total resource consumption and maximum job completion time, and (iv) minimization of the weighted total resource consumption and the total job completion time. We compare the common resource consumption function with the function where the resource consumed is proportional to the processing time of the job. We show that these two different resource consumption functions can give rise to very different solution methods and different computational complexities for the problem. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
This paper tackles the general single machine scheduling problem, where jobs have different release and due dates and the objective is to minimize the weighted number of late jobs. The notion of master sequence is first introduced, i.e., a sequence that contains at least an optimal sequence of jobs on time. This master sequence is used to derive an original mixed‐integer linear programming formulation. By relaxing some constraints, a Lagrangean relaxation algorithm is designed which gives both lower and upper bounds. The special case where jobs have equal weights is analyzed. Computational results are presented and, although the duality gap becomes larger with the number of jobs, it is possible to solve problems of more than 100 jobs. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 50: 2003  相似文献   

13.
In many practical manufacturing environments, jobs to be processed can be divided into different families such that a setup is required whenever there is a switch from processing a job of one family to another job of a different family. The time for setup could be sequence independent or sequence dependent. We consider two particular scheduling problems relevant to such situations. In both problems, we are given a set of jobs to be processed on a set of identical parallel machines. The objective of the first problem is to minimize total weighted completion time of jobs, and that of the second problem is to minimize weighted number of tardy jobs. We propose column generation based branch and bound exact solution algorithms for the problems. Computational experiments show that the algorithms are capable of solving both problems of medium size to optimality within reasonable computational time. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 823–840, 2003.  相似文献   

14.
We consider the problem of rescheduling n jobs to minimize the makespan on m parallel identical processors when m changes value. We show this problem to be NP-hard in general. Call a list schedule totally optimal if it is optimal for all m = 1, …,n. When n is less than 6, there always exists a totally optimal schedule, but for n ≥ 6 this can fail. We show that an exact solution is less robust than the largest processing time first (LPT) heuristic and discuss implications for polynomial approximation schemes and hierarchical planning models.  相似文献   

15.
We study two‐agent scheduling on a single sequential and compatible batching machine in which jobs in each batch are processed sequentially and compatibility means that jobs of distinct agents can be processed in a common batch. A fixed setup time is required before each batch is started. Each agent seeks to optimize some scheduling criterion that depends on the completion times of its own jobs only. We consider several scheduling problems arising from different combinations of some regular scheduling criteria, including the maximum cost (embracing lateness and makespan as its special cases), the total completion time, and the (weighted) number of tardy jobs. Our goal is to find an optimal schedule that minimizes the objective value of one agent, subject to an upper bound on the objective value of the other agent. For each problem under consideration, we provide either a polynomial‐time or a pseudo‐polynomial‐time algorithm to solve it. We also devise a fully polynomial‐time approximation scheme when both agents’ scheduling criteria are the weighted number of tardy jobs.  相似文献   

16.
T identical exponential lifetime components out of which G are initially functioning (and B are not) are to be allocated to N subsystems, which are connected either in parallel or in series. Subsystem i, i = 1,…, N, functions when at least Ki of its components function and the whole system is maintained by a single repairman. Component repair times are identical independent exponentials and repaired components are as good as new. The problem of the determination of the assembly plan that will maximize the system reliability at any (arbitrary) time instant t is solved when the component failure rate is sufficiently small. For the parallel configuration, the optimal assembly plan allocates as many components as possible to the subsystem with the smallest Ki and allocates functioning components to subsystems in increasing order of the Ki's. For the series configuration, the optimal assembly plan allocates both the surplus and the functioning components equally to all subsystems whenever possible, and when not possible it favors subsystems in decreasing order of the Ki's. The solution is interpreted in the context of the optimal allocation of processors and an initial number of jobs in a problem of routing time consuming jobs to parallel multiprocessor queues. © John Wiley & Sons, Inc. Naval Research Logistics 48: 732–746, 2001  相似文献   

17.
We consider scheduling problems involving two agents (agents A and B), each having a set of jobs that compete for the use of a common machine to process their respective jobs. The due dates of the A‐jobs are decision variables, which are determined by using the common (CON) or slack (SLK) due date assignment methods. Each agent wants to minimize a certain performance criterion depending on the completion times of its jobs only. Under each due date assignment method, the criterion of agent A is always the same, namely an integrated criterion consisting of the due date assignment cost and the weighted number of tardy jobs. Several different criteria are considered for agent B, including the maxima of regular functions (associated with each job), the total (weighted) completion time, and the weighted number of tardy jobs. The overall objective is to minimize the performance criterion of agent A, while keeping the objective value of agent B no greater than a given limit. We analyze the computational complexity, and devise polynomial or pseudo‐polynomial dynamic programming algorithms for the considered problems. We also convert, if viable, any of the devised pseudopolynomial dynamic programming algorithms into a fully polynomial‐time approximation scheme. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 416–429, 2016  相似文献   

18.
We consider the problem of scheduling N jobs on M parallel machines so as to minimize the maximum earliness or tardiness cost incurred for each of the jobs. Earliness and tardiness costs are given by general (but job-independent) functions of the amount of time a job is completed prior to or after a common due date. We show that in problems with a nonrestrictive due date, the problem decomposes into two parts. Each of the M longest jobs is assigned to a different machine, and all other jobs are assigned to the machines so as to minimize their makespan. With these assignments, the individual scheduling problems for each of the machines are simple to solve. We demonstrate that several simple heuristics of low complexity, based on this characterization, are asymptotically optimal under mild probabilistic conditions. We develop attractive worst-case bounds for them. We also develop a simple closed-form lower bound for the minimum cost value. The bound is asymptotically accurate under the same probabilistic conditions. In the case where the due date is restrictive, the problem is more complex only in the sense that the set of initial jobs on the machines is not easily characterized. However, we extend our heuristics and lower bounds to this general case as well. Numerical studies exhibit that these heuristics perform excellently even for small- or moderate-size problems both in the restrictive and nonrestrictive due-date case. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
模型深度的不断增加和处理序列长度的不一致对循环神经网络在不同处理器上的性能优化提出巨大挑战。针对自主研制的长向量处理器FT-M7032,实现了一个高效的循环神经网络加速引擎。该引擎采用行优先矩阵向量乘算法和数据感知的多核并行方式,提高矩阵向量乘的计算效率;采用两级内核融合优化方法降低临时数据传输的开销;采用手写汇编优化多种算子,进一步挖掘长向量处理器的性能潜力。实验表明,长向量处理器循环神经网络推理引擎可获得较高性能,相较于多核ARM CPU以及Intel Golden CPU,类循环神经网络模型长短记忆网络可获得最高62.68倍和3.12倍的性能加速。  相似文献   

20.
In this paper we study the scheduling problem that considers both production and job delivery at the same time with machine availability considerations. Only one vehicle is available to deliver jobs in a fixed transportation time to a distribution center. The vehicle can load at most K jobs as a delivery batch in one shipment due to the vehicle capacity constraint. The objective is to minimize the arrival time of the last delivery batch to the distribution center. Since machines may not always be available over the production period in real life due to preventive maintenance, we incorporate machine availability into the models. Three scenarios of the problem are studied. For the problem in which the jobs are processed on a single machine and the jobs interrupted by the unavailable machine interval are resumable, we provide a polynomial algorithm to solve the problem optimally. For the problem in which the jobs are processed on a single machine and the interrupted jobs are nonresumable, we first show that the problem is NP‐hard. We then propose a heuristic with a worst‐case error bound of 1/2 and show that the bound is tight. For the problem in which the jobs are processed on either one of two parallel machines, where only one machine has an unavailable interval and the interrupted jobs are resumable, we propose a heuristic with a worst‐case error bound of 2/3. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号