首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
Motivated by the flow of products in the iron and steel industry, we study an identical and parallel machine scheduling problem with batch deliveries, where jobs finished on the parallel machines are delivered to customers in batches. Each delivery batch has a capacity and incurs a cost. The objective is to find a coordinated production and delivery schedule that minimizes the total flow time of jobs plus the total delivery cost. This problem is an extension of the problem considered by Hall and Potts, Ann Oper Res 135 (2005) 41–64, who studied a two‐machine problem with an unbounded number of transporters and unbounded delivery capacity. We first provide a dynamic programming algorithm to solve a special case with a given job assignment to the machines. A heuristic algorithm is then presented for the general problem, and its worst‐case performance ratio is analyzed. The computational results show that the heuristic algorithm can generate near‐optimal solutions. Finally, we offer a fully polynomial‐time approximation scheme for a fixed number of machines. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 492–502, 2016  相似文献   

2.
In this paper, a single‐machine scheduling problem with weighted earliness and tardiness penalties is considered. Idle time between two adjacent jobs is permitted and due dates of jobs could be unequal. The dominance rules are utilized to develop a relationship matrix, which allows a branch‐and‐bound algorithm to eliminate a high percentage of infeasible solutions. After combining this matrix with a branching strategy, a procedure to solve the problem is proposed. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 760–780, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10039  相似文献   

3.
We consider parallel‐machine scheduling with a common server and job preemption to minimize the makespan. While the non‐preemptive version of the problem is strongly NP‐hard, the complexity status of the preemptive version has remained open. We show that the preemptive version is NP‐hard even if there is a fixed number of machines. We give a pseudo‐polynomial time algorithm to solve the case with two machines. We show that the case with an arbitrary number of machines is unary NP‐hard, analyze the performance ratios of some natural heuristic algorithms, and present several solvable special cases. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 388–398, 2017  相似文献   

4.
We consider scheduling a set of jobs with deadlines to minimize the total weighted late work on a single machine, where the late work of a job is the amount of processing of the job that is scheduled after its due date and before its deadline. This is the first study on scheduling with the late work criterion under the deadline restriction. In this paper, we show that (i) the problem is unary NP‐hard even if all the jobs have a unit weight, (ii) the problem is binary NP‐hard and admits a pseudo‐polynomial‐time algorithm and a fully polynomial‐time approximation scheme if all the jobs have a common due date, and (iii) some special cases of the problem are polynomially solvable.  相似文献   

5.
We study the scheduling situation in which a set of jobs subjected to release dates and deadlines are to be performed on a single machine. The objective is to minimize a piecewise linear objective function ∑jFj where Fj(Cj) corresponds to the cost of the completion of job j at time Cj. This class of function is very large and thus interesting both from a theoretical and practical point of view: It can be used to model total (weighted) completion time, total (weighted) tardiness, earliness and tardiness, etc. We introduce a new Mixed Integer Program (MIP) based on time interval decomposition. Our MIP is closely related to the well‐known time‐indexed MIP formulation but uses much less variables and constraints. Experiments on academic benchmarks as well as on real‐life industrial problems show that our generic MIP formulation is efficient. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号