首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The two inventory echelons under consideration are the depot, D, and k tender ships E1, …, Ek. The tender ships supply the demand for certain parts of operational boats (the customers). The statistical model assumes that the total monthly demands at the k tenders are stationary independent Poisson random variables, with unknown means λ1, …, λk. The stock levels on the tenders, at the heginning of each month, can be adjusted either by ordering more units from the depot, or by shipping bach to the depot an excess stock. There is no traffic of stock between tenders which is not via the depot. The lead time from the depot to the tenders is at most 1 month. The lead time for orders of the depot from the manufacturer is L months. The loss function due to erroneous decision js comprised of linear functions of the extra monthly stocks, and linear functions of shortages at the tenders and at the depot over the N months. A Bayes sequential decision process is set up for the optimal adjustment levels and orders of the two echelons. The Dynamic Programming recursive functions are given for a planning horizon of N months.  相似文献   

2.
The problem treated here involves a mixed fleet of vehicles comprising two types of vehicles: K1 tanker-type vehicles capable of refueling themselves and other vehicles, and K2 nontanker vehicles incapable of refueling. The two groups of vehicles have different fuel capacities as well as different fuel consumption rates. The problem is to find the tanker refueling sequence that maximizes the range attainable for the K2 nontankers. A tanker refueling sequence is a partition of the tankers into m subsets (2 ≤ mK1). A given sequence of the partition provides a realization of the number of tankers participating in each successive refueling operation. The problem is first formulated as a nonlinear mixed-integer program and reduced to a linear program for a fixed sequence which may be solved by a simple recursive procedure. It is proven that a “unit refueling sequence” composed of one tanker refueling at each of K1 refueling operations is optimal. In addition, the problem of designing the “minimum fleet” (minimum number of tankers) required for a given set of K2 nontankers to attain maximal range is resolved. Also studied are extensions to the problem with a constraint on the number of refueling operations, different nontanker recovery base geometry, and refueling on the return trip.  相似文献   

3.
Mehrez, Stern, and Ronen have defined a vehicle refueling problem in which a fleet of vehicles travels on a round-trip, self-contained mission from a common origin, with the objective of maximizing the operational range of the fleet. They have defined a “pure refueling chain” strategy for transferring fuel between vehicles in the fleet, and have solved the problem in the special cases when all vehicles have the same fuel capacity or consumption rate. In this article we present algorithms for the general case, where vehicles have different capacities and consumption rates. Our approach is based on a new primal dual formulation of the problem. The exact algorithm was effective to find the optimal solution for a fleet size n ⩽13. For larger fleets, we present an approximation version of it, which very quickly found a solution within 1% of the maximum possible range for arbitrarily large (up to n = 200) fleets. We also show that a small number of the best vehicles can always reach almost the same range as a large fleet. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
This article studies a min‐max path cover problem, which is to determine a set of paths for k capacitated vehicles to service all the customers in a given weighted graph so that the largest path cost is minimized. The problem has wide applications in vehicle routing, especially when the minimization of the latest service completion time is a critical performance measure. We have analyzed four typical variants of this problem, where the vehicles have either unlimited or limited capacities, and they start from either a given depot or any depot of a given depot set. We have developed approximation algorithms for these four variants, which achieve approximation ratios of max{3 ‐ 2/k,2}, 5, max{5 ‐ 2/k,4}, and 7, respectively. We have also analyzed the approximation hardness of these variants by showing that, unless P = NP , it is impossible for them to achieve approximation ratios less than 4/3, 3/2, 3/2, and 2, respectively. We have further extended the techniques and results developed for this problem to other min‐max vehicle routing problems.© 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

5.
Consider a multi-period multi-fare class airline overbooking problem that relates to a single-leg flight. Passengers may cancel their reservations at any time, including being no-shows at flight-time. Canceling passengers receive a refund that depends on their fare class, e.g., supersaver, coach, etc. At flight-time, the airline bumps passengers in excess of flight capacity and pays a penalty for so doing. A continuous state-space dynamic programming model is developed in which the state is the numbers of reservations currently on hand in each fare class. In each period, reservation requests occur in only one fare class and the fraction of reservations canceling in each class is independent of the number of reservations therein. A booking-limit policy is optimal, i.e., in each period the airline accepts reservation requests up to a booking limit if the number of initial reservations in the fare class is less than the booking limit, and declines reservation requests otherwise. The booking limits for each class depend on the numbers of reservations in the other classes. When there are two fare classes the optimal booking limits in each class decrease with the number of reservations in the other class. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
In this article we consider a version of the vehicle-routing problem (VRP): A fleet of identical capacitated vehicles serves a system of one warehouse and N customers of two types dispersed in the plane. Customers may require deliveries from the warehouse, back hauls to the warehouse, or both. The objective is to design a set of routes of minimum total length to serve all customers, without violating the capacity restriction of the vehicles along the routes. The capacity restriction here, in contrast to the VRP without back hauls is complicated because amount of capacity used depends on the order the customers are visited along the routes. The problem is NP-hard. We develop a lower bound on the optimal total cost and a heuristic solution for the problem. The routes generated by the heuristic are such that the back-haul customers are served only after terminating service to the delivery customers. However, the heuristic is shown to converge to the optimal solution, under mild probabilistic conditions, as fast as N−0.5. The complexity of the heuristic, as well as the computation of the lower bound, is O(N3) if all customers have unit demand size and O(N3 log N) otherwise, independently of the demand sizes. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
In this article, an optimal replacement policy for a cold standby repairable system consisting of two dissimilar components with repair priority is studied. Assume that both Components 1 and 2, after repair, are not as good as new, and the main component (Component 1) has repair priority. Both the sequence of working times and that of the components'repair times are generated by geometric processes. We consider a bivariate replacement policy (T,N) in which the system is replaced when either cumulative working time of Component 1 reaches T, or the number of failures of Component 1 reaches N, whichever occurs first. The problem is to determine the optimal replacement policy (T,N)* such that the long run average loss per unit time (or simply the average loss rate) of the system is minimized. An explicit expression of this rate is derived, and then optimal policy (T,N)* can be numerically determined through a two‐dimensional‐search procedure. A numerical example is given to illustrate the model's applicability and procedure, and to illustrate some properties of the optimal solution. We also show that if replacements are made solely on the basis of the number of failures N, or solely on the basis of the cumulative working time T, the former class of policies performs better than the latter, albeit only under some mild conditions. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

8.
In this paper, two different kinds of (N, T)‐policies for an M/M/m queueing system are studied. The system operates only intermittently and is shut down when no customers are present any more. A fixed setup cost of K > 0 is incurred each time the system is reopened. Also, a holding cost of h > 0 per unit time is incurred for each customer present. The two (N, T)‐policies studied for this queueing system with cost structures are as follows: (1) The system is reactivated as soon as N customers are present or the waiting time of the leading customer reaches a predefined time T, and (2) the system is reactivated as soon as N customers are present or the time units after the end of the last busy period reaches a predefined time T. The equations satisfied by the optimal policy (N*, T*) for minimizing the long‐run average cost per unit time in both cases are obtained. Particularly, we obtain the explicit optimal joint policy (N*, T*) and optimal objective value for the case of a single server, the explicit optimal policy N* and optimal objective value for the case of multiple servers when only predefined customers number N is measured, and the explicit optimal policy T* and optimal objective value for the case of multiple servers when only predefined time units T is measured, respectively. These results partly extend (1) the classic N or T policy to a more practical (N, T)‐policy and (2) the conclusions obtained for single server system to a system consisting of m (m ≥ 1) servers. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 240–258, 2000  相似文献   

9.
Consider a continuous-time airline overbooking problem that relates to a single-leg flight and a single service class with a stationary fare. Passengers may cancel their reservations at any time and receive a full refund. Therefore fares can be thought of as being paid at flight time. At that time, the airline bumps passengers in excess of flight capacity and pays a penalty for so doing. The wflight-time revenue, that is, fares received less bumping penalties paid, is quasiconcave in the number of reservations at that time. We model the reservations process as a continuous-time terminal-value birth-and-death process. A more general model than is necessary for an airline reservations system is considered, in which the airline controls both the reservation acceptance (birth) and the cancellation (death) rates. In current practice airlines do not control cancellation rates (though other industries do exercise such control, e.g., hotels) and control reservation acceptance rates by declining reservation requests. The more general model might be applied to other targeting applications, such as steering a vehicle through space toward a target location. For the general model a piecewise-constant booking-limit policy is optimal; that is, at all times the airline accepts reservation requests up to a booking limit if the current number of reservations is less than that booking limit, and declines reservation requests otherwise. When the airline is allowed to decline all reservation requests, as is the case in practice, the booking-limit optimal policy defined by using the greatest optimal booking limit at all times is piecewise constant. Moreover, these booking limits fall toward flight time. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
T identical exponential lifetime components out of which G are initially functioning (and B are not) are to be allocated to N subsystems, which are connected either in parallel or in series. Subsystem i, i = 1,…, N, functions when at least Ki of its components function and the whole system is maintained by a single repairman. Component repair times are identical independent exponentials and repaired components are as good as new. The problem of the determination of the assembly plan that will maximize the system reliability at any (arbitrary) time instant t is solved when the component failure rate is sufficiently small. For the parallel configuration, the optimal assembly plan allocates as many components as possible to the subsystem with the smallest Ki and allocates functioning components to subsystems in increasing order of the Ki's. For the series configuration, the optimal assembly plan allocates both the surplus and the functioning components equally to all subsystems whenever possible, and when not possible it favors subsystems in decreasing order of the Ki's. The solution is interpreted in the context of the optimal allocation of processors and an initial number of jobs in a problem of routing time consuming jobs to parallel multiprocessor queues. © John Wiley & Sons, Inc. Naval Research Logistics 48: 732–746, 2001  相似文献   

11.
In this paper a model is developed for determining optimal strategies for two competing firms which are about to submit sealed tender bids on K contracts. A contract calls for the winning firm to supply a specific amount of a commodity at the bid price. By the same token, the production of that commodity involves various amounts of N different resources which each firm possesses in limited quantities. It is assumed that the same two firms bid on each contract and that each wants to determine a bidding strategy which will maximize its profits subject to the constraint that the firm must be able to produce the amount of products required to meet the contracts it wins. This bidding model is formulated as a sequence of bimatrix games coupled together by N resource constraints. Since the firms' strategy spaces are intertwined, the usual quadratic programming methods cannot be used to determine equilibrium strategies. In lieu of this a number of theorems are given which partially characterize such strategies. For the single resource problem techniques are developed for determining equilibrium strategies. In the multiple resource problem similar methods yield subequilibrium strategies or strategies that are equilibrium from at least one firm's point of view.  相似文献   

12.
In this journal in 1967. Szware presented an algorithm for the optimal routing of a common vehicle fleet between m sources and n sinks with p different types of commodities. The main premise of the formulation is that a truck may carry only one commodity at a time and must deliver the entire load to one demand area. This eliminates the problem of routing vehicles between sources or between sinks and limits the problem to the routing of loaded trucks between sources and sinks and empty trucks making the return trip. Szwarc considered only the transportation aspect of the problem (i. e., no intermediate points) and presented a very efficient algorithm for solution of the case he described. If the total supply is greater than the total demand, Szwarc shows that the problem is equivalent to a (mp + n) by (np + m) Hitchcock transportation problem. Digital computer codes for this algorithm require rapid access storage for a matrix of size (mp + n) by (np + m); therefore, computer storage required grows proportionally to p2. This paper offers an extension of his work to a more general form: a transshipment network with capacity constraints on all arcs and facilities. The problem is shown to be solvable directly by Fulkerson's out-of-kilter algorithm. Digital computer codes for this formulation require rapid access storage proportional to p instead of p2. Computational results indicate that, in addition to handling the extensions, the out-of-kilter algorithm is more efficient in the solution of the original problem when there is a mad, rate number of commodities and a computer of limited storage capacity.  相似文献   

13.
The focus of this research is on self-contained missions requiring round-trip vehicle travel from a common origin. For a single vehicle the maximal distance that can be reached without refueling is defined as its operational range. Operational range is a function of a vehicle's fuel capacity and fuel consumption characteristics. In order to increase a vehicle's range beyond its operational range replenishment from a secondary fuel source is necessary. In this article, the problem of maximizing the range of any single vehicle from a fleet of n vehicles is investigated. This is done for four types of fleet configurations: (1) identical vehicles, (2) vehicles with identical fuel consumption rates but different fuel capacities, (3) vehicles which have the same fuel capacity but different fuel consumption rates, and (4) vehicles with both different fuel capacities and different consumption rates. For each of the first three configurations the optimal refueling policy that provides the maximal range is determined for a sequential refueling chain strategy. In such a strategy the last vehicle to be refueled is the next vehicle to transfer its fuel. Several mathematical programming formulations are given and their solutions determined in closed form. One of the major conclusions is that for an identical fleet the range of the farthest vehicle can be increased by at most 50% more than the operational range of a single vehicle. Moreover, this limit is reached very quickly with small values of n. The performance of the identical fleet configuration is further investigated for a refueling strategy involving a multiple-transfer refueling chain, stochastic vehicle failures, finite refueling times, and prepositioned fleets. No simple refueling ordering rules were found for the most general case (configuration 4). In addition, the case of vehicles with different fuel capacities is investigated under a budget constraint. The analysis provides several benchmarks or bounds for which more realistic structures may be compared. Some of the more complex structures left for future study are described.  相似文献   

14.
We consider a problem of optimal division of stock between a logistic depot and several geographically dispersed bases, in a two‐echelon supply chain. The objective is to minimize the total cost of inventory shipment, taking into account direct shipments between the depot and the bases, and lateral transshipments between bases. We prove the convexity of the objective function and suggest a procedure for identifying the optimal solution. Small‐dimensional cases, as well as a limit case in which the number of bases tends to infinity, are solved analytically for arbitrary distributions of demand. For a general case, an approximation is suggested. We show that, in many practical cases, partial pooling is the best strategy, and large proportions of the inventory should be kept at the bases rather than at the depot. The analytical and numerical examples show that complete pooling is obtained only as a limit case in which the transshipment cost tends to infinity. © 2017 Wiley Periodicals, Inc. Naval Research Logistics, 64: 3–18, 2017  相似文献   

15.
The problem is to protect a set of T identical targets that may come under attack by A identical weapons. The targets are to be defended by D identical interceptors, which must be preallocated to defend selected targets. The attacker is aware of the number of interceptors, but is ignorant of their allocation. The size of the attack is chosen by the attacker from within a specified range. The robust strategies developed in this article do not require the defender to assume an attack size. Rather, the defender chooses a strategy which is good over a wide range of attack sizes, though not necessarily best for any particular attack size. The attacker, knowing that the defender is adopting a robust strategy, chooses the optimal attack strategy for the number of weapons he chooses to expend. The expected number of survivors is a function of the robust defense strategy and optimal attack strategy against this robust defense.  相似文献   

16.
Consider a fleet of vehicles comprised of K1 identical tankers and K2 identical nontankers (small aircraft). Tankers are capable of refueling other tankers as well as nontankers. The problem is to find that refueling sequence of the tankers that maximizes the range simultaneously attainable by all K2 nontankers. A recent paper established that the “unit refueling sequence,” comprised of one tanker refueling at each of K1 refueling operations, is optimal. The same paper also proffered the following conjecture for the case that the number of refueling operations is constrained to be less than the number of tankers: A nonincreasing refueling sequence is optimal. This article proves the conjecture.  相似文献   

17.
We investigate the problem of scheduling a fleet of vehicles to visit the customers located on a path to minimize some regular function of the visiting times of the customers. For the single‐vehicle problem, we prove that it is pseudopolynomially solvable for any minsum objective and polynomially solvable for any minmax objective. Also, we establish the NP‐hardness of minimizing the weighted number of tardy customers and the total weighted tardiness, and present polynomial algorithms for their special cases with a common due date. For the multivehicle problem involving n customers, we show that an optimal solution can be found by solving or O(n) single‐vehicle problems. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 61: 34–43, 2014  相似文献   

18.
The optimization problem as formulated in the METRIC model takes the form of minimizing the expected number of total system backorders in a two-echelon inventory system subject to a budget constraint. The system contains recoverable items – items subject to repair when they fail. To solve this problem, one needs to find the optimal Lagrangian multiplier associated with the given budget constraint. For any large-scale inventory system, this task is computationally not trivial. Fox and Landi proposed one method that was a significant improvement over the original METRIC algorithm. In this report we first develop a method for estimating the value of the optimal Lagrangian multiplier used in the Fox-Landi algorithm, present alternative ways for determining stock levels, and compare these proposed approaches with the Fox-Landi algorithm, using two hypothetical inventory systems – one having 3 bases and 75 items, the other 5 bases and 125 items. The comparison shows that the computational time can be reduced by nearly 50 percent. Another factor that contributes to the higher requirement for computational time in obtaining the solution to two-echelon inventory systems is that it has to allocate stock optimally to the depot as well as to bases for a given total-system stock level. This essentially requires the evaluation of every possible combination of depot and base stock levels – a time-consuming process for many practical inventory problems with a sizable system stock level. This report also suggests a simple approximation method for estimating the optimal depot stock level. When this method was applied to the same two hypotetical inventory systems indicated above, it was found that the estimate of optimal depot stock is quite close to the optimal value in all cases. Furthermore, the increase in expected system backorders using the estimated depot stock levels rather than the optimal levels is generally small.  相似文献   

19.
We consider a model with M + N identical machines. As many as N of these can be working at any given time and the others act as standby spares. Working machines fail at exponential rate λ, spares fail at exponential rale γ, and failed machines are repaired at exponential rate μ. The control variables are λ. μ, and the number of removable repairman, S, to be operated at any given time. Using the criterion of total expected discounted cost, we show that λ, S, and μ are monotonic functions of the number of failed machines M, N, the discount factor, and for the finite time horizon model, the amount of time remaining.  相似文献   

20.
This article deals with the problem of selecting the t best of n independent and identically distributed random variables which are observed sequentially with sampling cost c per unit. Assume that a decision for acceptance or rejection must be made after each sampling and that the reward for each observation with value x is given by px - c, where p is 1 if the observation is accepted, or 0 otherwise. The optimal decision procedure (strategy) for maximizing the total expected reward is obtained. The critical numbers which are necessary to carry out the optimal decision procedure is presented by two recursive equations. The limit values of the critical numbers and the expected sample size are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号