首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper discusses the properties of the inventory and advertising policy minimizing the expected discounted cost over a finite horizon in a dynamic nonstationary inventory model with random demand which is influenced by the level of promotion or goodwill. Attention is focused on the relation between the fluctuations over time of the optimal policies and the variations over time of the factors involved, i.e., demand distributions and various costs. The optimal policies are proved to be monotone in the various factors. Also, three types of fluctuations over time of the optimal policies are discussed according to which factor varies over time. For example, if over a finite interval, the random demand increases (stochastically) from one period to the next, reaches a maximum and then decreases, then the optimal inventory level will do the same. Also the period of maximum of demand never precedes that of maximum inventory. The optimal advertising behaves in the opposite way and its minimum will occur at the same time as the maximum of the inventory. The model has a linear inventory ordering cost and instantaneous delivery of stocks; many results, however, are extended to models with a convex ordering cost or a delivery time lag.  相似文献   

2.
In this paper, we present a continuous time optimal control model for studying a dynamic pricing and inventory control problem for a make‐to‐stock manufacturing system. We consider a multiproduct capacitated, dynamic setting. We introduce a demand‐based model where the demand is a linear function of the price, the inventory cost is linear, the production cost is an increasing strictly convex function of the production rate, and all coefficients are time‐dependent. A key part of the model is that no backorders are allowed. We introduce and study an algorithm that computes the optimal production and pricing policy as a function of the time on a finite time horizon, and discuss some insights. Our results illustrate the role of capacity and the effects of the dynamic nature of demand in the model. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

3.
The primary goal of this article is to extend the results of a previous article to the case where the effect of advertisement on sales lasts more than one period. Monotonicity of the optimal advertising and inventory policies in the various factors is investigated. Also, attention will be focused on the relationship between the fluctuations over time of the optimal policies and the variations over time of the factors involved, such as demand distributions and holding costs. For example, if over a finite interval the demand decreases from one period to the next, reaches a minimum, and then increases, then the optimal advertising policy will produce the opposite effect. The period of minimum demand never precedes that of maximum goodwill; moreover, the optimal inventory level decreases while the demand decreases. Finally, when demand distributions are just translates of one another, the results of this article can be extended to nonperishable goods.  相似文献   

4.
We consider a setting in which inventory plays both promotional and service roles; that is, higher inventories not only improve service levels but also stimulate demand by serving as a promotional tool (e.g., as the result of advertising effect by the enhanced product visibility). Specifically, we study the periodic‐review inventory systems in which the demand in each period is uncertain but increases with the inventory level. We investigate the multiperiod model with normal and expediting orders in each period, that is, any shortage will be met through emergency replenishment. Such a model takes the lost sales model as a special case. For the cases without and with fixed order costs, the optimal inventory replenishment policy is shown to be of the base‐stock type and of the (s,S) type, respectively. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

5.
In this paper an inventory model with several demand classes, prioritised according to importance, is analysed. We consider a lot‐for‐lot or (S ? 1, S) inventory model with lost sales. For each demand class there is a critical stock level at and below which demand from that class is not satisfied from stock on hand. In this way stock is retained to meet demand from higher priority demand classes. A set of such critical levels determines the stocking policy. For Poisson demand and a generally distributed lead time, we derive expressions for the service levels for each demand class and the average total cost per unit time. Efficient solution methods for obtaining optimal policies, with and without service level constraints, are presented. Numerical experiments in which the solution methods are tested demonstrate that significant cost reductions can be achieved by distinguishing between demand classes. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 593–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10032  相似文献   

6.
An inventory model in which future demand is affected by stockouts has been considered recently by B. L. Schwartz. Some generalizations of Schwartz's model are presented in this paper and properties of the optimal policies are determined. In the case of deterministic demand, a set-up cost is included and a mixture of backlogged and nonbacklogged orders is allowed during stockout. It is proved that the optimal policy entails either no stockout or continual stockout, depending on the values of three parameters. For stochastic demand, the effect of stockouts on demand density is postulated, the resulting optimal inventory policy is discussed, and an example involving an exponential density function is then analyzed in detail.  相似文献   

7.
This paper describes an empirical evaluation of several approximations to Hadley and Whitin's approximate continuous review inventory model with backorders. It is assumed that lead time demand is normally distributed and various exponential functions are used to approximate the upper tail of this distribution. These approximations offer two important advantages in computing reorder points and reorder quantities. One advantage is that normal tables are no longer required to obtain solutions, and a second advantage is that solutions may be obtained directly rather than iteratively. These approximations are evaluated on two distinct inventory systems. It is shown that an increase in average annual cost of less that 1% is expected as a result of using these approximations. The only exception to this statement is with inventory systems in which a high shortage cost is specified and ordering costs are unusually low.  相似文献   

8.
In this paper we study the impact of cancellations of customer orders on an inventory system. We develop a periodic review (s, S) inventory model with Poisson demands, deterministic demand leadtimes and supply leadtimes. When no set up cost is present for replenishment, the behavior of the system cost can be studied analytically. For the case with a fixed set up cost, we derive the operating characteristics of the model via an embedded Markov chain analysis. Based on this, we formulate the total cost function and suggest a two‐phase approach to optimization. Our model can be used to compute cancellation fees and to evaluate the impacts of various conditions of cancellation. We find that cancellations, as major sources of inventory information distortion, increase total system costs, and the magnitude of the cost impact depends on the probability of cancellation and the expected cancellation time. Other relevant lessons and insights are also discussed. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 213–231, 1999  相似文献   

9.
Products with short life cycles are becoming increasingly common in many industries, such as the personal computer (PC) and mobile phone industries. Traditional forecasting methods and inventory policies can be inappropriate for forecasting demand and managing inventory for a product with a short life cycle because they usually do not take into account the characteristics of the product life cycle. This can result in inaccurate forecasts, high inventory cost, and low service levels. Besides, many forecasting methods require a significant demand history, which is available only after the product has been sold for some time. In this paper, we present an adaptive forecasting algorithm with two characteristics. First, it uses structural knowledge on the product life cycle to model the demand. Second, it combines knowledge on the demand that is available prior to the launch of the product with actual demand data that become available after the introduction of the product to generate and update demand forecasts. Based on the forecasting algorithm, we develop an optimal inventory policy. Since the optimal inventory policy is computationally expensive, we propose three heuristics and show in a numerical study that one of the heuristics generates near‐optimal solutions. The evaluation of our approach is based on demand data from a leading PC manufacturer in the United States, where the forecasting algorithm has been implemented. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

10.
The principal innovation in this paper is the consideration of a new objective function for inventory models which we call the shortage probability criterion. Under this criterion we seek to minimize the total expected discounted cost of ordering subject to the probability that the stock level at the end of the period being less than some fixed quantity not exceed some prescribed number. For three different models we show that the minimum order policy is optimal. This result is then applied to a particular inventory model in which the demand distribution is not completely known. A Bayesian procedure is discussed for obtaining optimal policies.  相似文献   

11.
This paper treats an approximate continuous review inventory model with backlogging of excess demand and stochastic leadtime. The major result derived is that the behavior of the optimal order size with respect to the shortage cost parameter is determined solely by the “conditional mean residual life” function corresponding to the leadtime demand distribution. Some minor results and illustrative examples are also included.  相似文献   

12.
针对随机需求条件下的虚拟物流库存控制问题进行了深入研究,提出了一种新的联合库存控制策略——(T,S,s)策略,建立了相应的库存成本模型,并构造遗传算法对模型进行求解。结果分析表明,所提出的(T,S,S)联合库存控制策略是有效的。  相似文献   

13.
This paper considers the problem of maintaining an inventory of an item which can deteriorate and become useless. A periodic review procedure is used and new items ordered may experience a time lag in delivery. Items are considered to deteriorate through one or two states before becoming useless. Thus the deterioration process in each period plays the role of the usual demand process and is a function of the inventory level at the beginning of each period. For the case of no time lag in delivery, one stage deterioration, and either binomial or uniform deterioration, optimal ordering policies are obtained for the n-period dynamic model with the standard cost structure. (For the shortage probability criterion see the other paper by Iglehart and Jaquette, in this issue.) These policies are of the single critical number type. For more complicated models suboptimal policies of this same type are found.  相似文献   

14.
This article presents another inventory model for situations in which, during the stockout period, a fraction b of the demand is backordered and the remaining fraction 1 ? b is lost. By defining a time-proportional backorder cost and a fixed penalty cost per unit lost, a unimodal objective function representing the average annual cost of operating the inventory system is obtained. The optimal operating policy variables are calculated directly.  相似文献   

15.
The system under study is a single item, two‐echelon production‐inventory system consisting of a capacitated production facility, a central warehouse, and M regional distribution centers that satisfy stochastic demand. Our objective is to determine a system base‐stock level which minimizes the long run average system cost per period. Central to the approach are (1) an inventory allocation model and associated convex cost function designed to allocate a given amount of system inventory across locations, and (2) a characterization of the amount of available system inventory using the inventory shortfall random variable. An exact model must consider the possibility that inventories may be imbalanced in a given period. By assuming inventory imbalances cannot occur, we develop an approximation model from which we obtain a lower bound on the per period expected cost. Through an extensive simulation study, we analyze the quality of our approximation, which on average performed within 0.50% of the lower bound. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 377–398, 2000  相似文献   

16.
This paper deals with a periodic review inventory system in which a constant proportion of stock issued to meet demand each period feeds back into the inventory after a fixed number of periods. Various applications of the model are discussed, including blood bank management and the control of reparable item inventories. We assume that on hand inventory is subject to proportional decay. Demands in successive periods are assumed to be independent identically distributed random variables. The functional equation defining an optimal policy is formulated and a myopic base stock approximation is developed. This myopic policy is shown to be optimal for the case where the feedback delay is equal to one period. Both cost and ordering decision comparisons for optimal and myopic policies are carried out numerically for a delay time of two periods over a wide range of input parameter values.  相似文献   

17.
In this paper the inventory problem with backorders both deterministic and stochastic is studied using trade-off analysis in the context of vector optimization theory. The set of Pareto-optimal solutions is geometrically characterized in both the constrained and unconstrained cases. Moreover, a new way of utilizing Pareto-optimality concepts to handle classical inventory problems with backorders is derived. A new analysis of these models is done by means of a trade-off analysis. New solutions are shown, and an error bound for total inventory cost is provided. Other models such as multi-item or stochastic lead-time demand inventory problems are addressed and their Pareto-optimal solution sets are obtained. An example is included showing the additional applicability of this kind of analysis to handle parametric problems. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 83–98, 1998  相似文献   

18.
In this paper, we extend the inventory lot‐size models to allow for inflation and fluctuating demand (which is more general than constant, increasing, decreasing, and log‐concave demand patterns). We prove that the optimal replenishment schedule not only exists but is also unique. Furthermore, we show that the total cost associated with the inventory system is a convex function of the number of replenishments. Hence, the search for the optimal number of replenishments is simplified to finding a local minimum. Finally, several numerical examples are provided to illustrate the results. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 144–158, 2001  相似文献   

19.
This article presents several single-echelon, single-item, static demand inventory models for situations in which, during the stockout period, a fraction b of the demand is backordered and the remaining fraction 1 - b is lost forever. Both deterministic and stochastic demand are considered. although the case of stochastic demand is treated heuristically. In each situation, a mathematical model representing the average annual cost of operating the inventory system is developed. and an optimum operating policy derived. At the extremes b=1 and b=0 the models presented reduce to the usual backorders and lost sales cases, respectively.  相似文献   

20.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号