首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A paradox arises when a transportation problem admits to a total cost solution which is lower than the optimum and is attainable by shipping larger quantities of goods over the same routes that were previously designated as optimal. That is, falling total costs are present in moving to the greater shipment quantities. Necessary conditions for this to occur are established and an algorithm for solving this expanded transportation problem is supplied.  相似文献   

2.
This article explores the problem of the transshipment of goods between centers that are situated along a single road. Costs are incurred both for goods that are shipped and for goods that remain in their original centers. A procedure is developed that determines a partial optimal assignment by use of a northwest corner rule solution. This partial assignment then is completed by solving a number of smaller tridiagonal transportation problems.  相似文献   

3.
This article is concerned with the analysis of a squared-Euclidean distance location-allocation problem with balanced transportation constraints, where the costs are directly proportional to distances and the amount shipped. The problem is shown to be equivalent to maximizing a convex quadratic function subject to transportation constraints. A branch-and-bound algorithm is developed that utilizes a specialized, tight, linear programming representation to compute strong upper bounds via a Lagrangian relaxation scheme. These bounds are shown to substantially dominate several other upper bounds that are derived using standard techniques as problem size increases. The special structure of the transportation constraints is used to derive a partitioning scheme, and this structure is further exploited to devise suitable logical tests that tighten the bounds implied by the branching restrictions on the transportation flows. The transportation structure is also used to generate additional cut-set inequalities based on a cycle prevention method which preserves a forest graph for any partial solution. Results of the computational experiments, and a discussion on possible extensions, are also presented.  相似文献   

4.
A generalized-indices transportation problem is formulated and an algorithm is presented for its solution. The algorithm is an extension of the modi-method. A theorem on the number of independent variables in the generalized-indices transportation problem is proved. An example problem is solved for the four-indices transportation problem. A computer program has been written to solve any four-indices problem.  相似文献   

5.
Among the many tools of the operations researcher is the transportation algorithm which has been used to solve a variety of problems ranging from shipping plans to plant location. An important variation of the basic transportation problem is the transportation problem with stochastic demand or stochastic supply. This paper presents a simple approximation technique which may be used as a starting solution for algorithms that determine exact solutions. The paper indicates that the approximation technique offered here is superior to a starting solution obtained by substituting expected demand for the random variables.  相似文献   

6.
The bottleneck transportation problem can be stated as follows: A set of supplies and a set of demands are specified such that the total supply is equal to the total demand. There is a transportation time associated between each supply point and each demand point. It is required to find a feasible distribution (of the supplies) which minimizes the maximum transportaton time associated between a supply point and a demand point such that the distribution between the two points is positive. In addition, one may wish to find from among all optimal solutions to the bottleneck transportation problem, a solution which minimizes the total distribution that requires the maximum time Two algorithms are given for solving the above problems. One of them is a primal approach in the sense that improving fcasible solutions are obtained at each iteration. The other is a “threshold” algorithm which is found to be far superior computationally.  相似文献   

7.
An algorithm is presented by which the set of all efficient solutions for a linear multiple-objective transportation problem can be enumerated. First the algorithm determines an initial efficient basic solution. In a second step all efficient basic solutions are enumerated. Finally, the set of all efficient solutions is constructed as a union of a minimal number of convex sets of efficient solutions. The algorithm is illustrated by a numerical example.  相似文献   

8.
In this paper, we consider a variant of the classical transportation problem as well as of the bottleneck transportation problem, which we call the minimax transportation problem. The problem considered is to determine a feasible flow xij from a set of origins I to a set of destinations J for which max(i,j)εIxJ{cijxij} is minimum. In this paper, we develop a parametric algorithm and a primal-dual algorithm to solve this problem. The parametric algorithm solves a transportation problem with parametric upper bounds and the primal-dual algorithm solves a sequence of related maximum flow problems. The primal-dual algorithm is shown to be polynomially bounded. Numerical investigations with both the algorithms are described in detail. The primal-dual algorithm is found to be computationally superior to the parametric algorithm and it can solve problems up to 1000 origins, 1000 destinations and 10,000 arcs in less than 1 minute on a DEC 10 computer system. The optimum solution of the minimax transportation problem may be noninteger. We also suggest a polynomial algorithm to convert this solution into an integer optimum solution.  相似文献   

9.
A dynamic version of the transportation (Hitchcock) problem occurs when there are demands at each of n sinks for T periods which can be fulfilled by shipments from m sources. A requirement in period t2 can be satisfied by a shipment in the same period (a linear shipping cost is incurred) or by a shipment in period t1 < t2 (in addition to the linear shipping cost a linear inventory cost is incurred for every period in which the commodity is stored). A well known method for solving this problem is to transform it into an equivalent single period transportation problem with mT sources and nT sinks. Our approach treats the model as a transshipment problem consisting of T, m source — n sink transportation problems linked together by inventory variables. Storage requirements are proportional to T2 for the single period equivalent transportation algorithm, proportional to T, for our algorithm without decomposition, and independent of T for our algorithm with decomposition. This storage saving feature enables much larger problems to be solved than were previously possible. Futhermore, we can easily incorporate upper bounds on inventories. This is not possible in the single period transportation equivalent.  相似文献   

10.
In this article, we consider a multi‐product closed‐loop supply chain network design problem where we locate collection centers and remanufacturing facilities while coordinating the forward and reverse flows in the network so as to minimize the processing, transportation, and fixed location costs. The problem of interest is motivated by the practice of an original equipment manufacturer in the automotive industry that provides service parts for vehicle maintenance and repair. We provide an effective problem formulation that is amenable to efficient Benders reformulation and an exact solution approach. More specifically, we develop an efficient dual solution approach to generate strong Benders cuts, and, in addition to the classical single Benders cut approach, we propose three different approaches for adding multiple Benders cuts. These cuts are obtained via dual problem disaggregation based either on the forward and reverse flows, or the products, or both. We present computational results which illustrate the superior performance of the proposed solution methodology with multiple Benders cuts in comparison to the branch‐and‐cut approach as well as the traditional Benders decomposition approach with a single cut. In particular, we observe that the use of multiple Benders cuts generates stronger lower bounds and promotes faster convergence to optimality. We also observe that if the model parameters are such that the different costs are not balanced, but, rather, are biased towards one of the major cost categories (processing, transportation or fixed location costs), the time required to obtain the optimal solution decreases considerably when using the proposed solution methodology as well as the branch‐and‐cut approach. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

11.
This paper investigates the effect on the optimum solution of a (capacitated) transportation problem when the data of the problem (the rim conditions-i. e., the warehouse supplies and market demands-the per unit transportation costs and the upper bounds) are continuously varied as a (linear) function of a single parameter. An operator theory is developed and algorithms provided for applying rim and cost operators that effect the transformation of optimum solution associated with changes in rim conditions and unit costs. Bound operators that effect changes in upper bounds are shown to be equivalent to rim operators. The discussion in this paper is limited to basis preserving operators for which the changes in the data are such that the optimum basis structures are preserved.  相似文献   

12.
Motivated by some practical applications, we study a new integrated loading and transportation scheduling problem. Given a set of jobs, a single crane is available to load jobs, one by one, onto semitrailers with a given capacity. Loaded semitrailers are assigned to tractors for transportation tasks. Subject to limited resources (crane, semitrailers, and tractors), the problem is to determine (1) an assignment of jobs to semitrailers for loading tasks, (2) a sequence for the crane to load jobs onto semitrailers, (3) an assignment of loaded semitrailers to tractors for transportation tasks, and (4) a transportation schedule of assigned tractors such that the completion time of the last transportation task is minimized. We first formulate the problem as a mixed integer linear programming model (MILPM) and prove that the problem is strongly NP‐hard. Then, optimality properties are provided which are useful in establishing an improved MILPM and designing solution algorithms. We develop a constructive heuristic, two LP‐based heuristics, and a recovering beam search heuristic to solve this problem. An improved procedure for solutions by heuristics is also presented. Furthermore, two branch‐and‐bound (B&B) algorithms with two different lower bounds are developed to solve the problem to optimality. Finally, computational experiments using both real data and randomly generated data demonstrate that our heuristics are highly efficient and effective. In terms of computational time and the number of instances solved to optimality in a time limit, the B&B algorithms are better than solving the MILPM. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 416–433, 2015  相似文献   

13.
To rank the solutions to the assignment problem using an extreme point method, it is necessary to be able to find all extreme points which are adjacent to a given extreme solution. Recent work has shown a procedure for determining adjacent vertices on transportation polytopes using a modification of the Chernikova Algorithm. We present here a procedure for assignment polytopes which is a simplification of the more general procedure for transportation polytopes and which also allows for implicit enumeration of adjacent vertices.  相似文献   

14.
This paper investigates certain issues of coefficient sensitivity in generalized network problems when such problems have small gains or losses. In these instances, it might be computationally advantageous to temporarily ignore these gains or losses and solve the resultant “pure” network problem. Subsequently, the optimal solution to the pure problem could be used to derive the optimal solution to the original generalized network problem. In this paper we focus on generalized transportation problems and consider the following question: Given an optimal solution to the pure transportation problem, under what conditions will the optimal solution to the original generalized transportation problem have the same basic variables? We study special cases of the generalized transportation problem in terms of convexity with respect to a basis. For the special case when all gains or losses are identical, we show that convexity holds. We use this result to determine conditions on the magnitude of the gains or losses such that the optimal solutions to both the generalized transportation problem and the associated pure transportation problem have the same basic variables. For more general cases, we establish sufficient conditions for convexity and feasibility. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 666–685, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10034  相似文献   

15.
This paper shows how completely reduced matrices can be used in obtaining exact or approximate solutions to transportation problems with fixed charges. It does not treat methods for obtaining reduced matrices, which are available elsewhere, but it does discuss the problem of obtaining a completely reduced matrix, and then a general parametric solution to the primal problem, from any particular solution. Methods for obtaining particular solutions with determinacies of maximum order (solutions for the constant fixed charges problem) are then presented. The paper terminates with a discussion of methods which are useful in obtaining approximations to solutions of fixed charges problems with charges not constant.  相似文献   

16.
一类带容量限制的运输问题   总被引:11,自引:2,他引:9  
考虑一类带容量限制的运输问题.采用构造辅助网络的方法,将运输网络中的每个配送中心均拆分成两个节点,构造出新弧,形成新的网络,把此类运输问题转换为最小费用流问题来解决.并在此基础上,考虑运输网络中配送中心的容量扩张问题.  相似文献   

17.
18.
It is known to be real that the per unit transportation cost from a specific supply source to a given demand sink is dependent on the quantity shipped, so that there exist finite intervals for quantities where price breaks are offered to customers. Thus, such a quantity discount results in a nonconvex, piecewise linear functional. In this paper, an algorithm is provided to solve this problem. This algorithm, with minor modifications, is shown to encompass the “incremental” quantity discount and the “fixed charge” transportation problems as well. It is based upon a branch-and-bound solution procedure. The branches lead to ordinary transportation problems, the results of which are obtained by utilizing the “cost operator” for one branch and “rim operator” for another branch. Suitable illustrations and extensions are also provided.  相似文献   

19.
A stochastic production-maximizing problem with transportation constraints is considered where the production rates, Rij, of man i — job j combinations are random variables rather than constants. It is shown that for the family of Weibull distributions (of which the Exponential is a special case) with scale parameters λij and shape parameter β, the plan that maximizes the expected rate of the entire line is obtained by solving a deterministic fixed charge transportation problem with no linear costs and with “set-up” cost matrix ‖λij‖.  相似文献   

20.
A branch and bound algorithm is developed for a class of allocation problems in which some constraint coefficients depend on the values of certain of the decision variables. Were it not for these dependencies, the problems could be solved by linear programming. The algorithm is developed in terms of a strategic deployment problem in which it is desired to find a least-cost transportation fleet, subject to constraints on men/materiel requirements in the event of certain hypothesized contingencies. Among the transportation vehicles available for selection are aircraft which exhibit the characteristic that the amount of goods deliverable by an aircraft on a particular route in a given time period (called aircraft productivity and measured in kilotons/aircraft/month) depends on the ratio of type 1 to type 2 aircraft used on that particular route. A model is formulated in which these relationships are first approximated by piecewise linear functions. A branch and bound algorithm for solving the resultant nonlinear problem is then presented; the algorithm solves a sequence of linear programming problems. The algorithm is illustrated by a sample problem and comments concerning its practicality are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号