首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
1.潜艇在水下航行时,是如何发现水下障碍物的? 答:潜艇水下航行时,对水下目标的探测主要靠潜艇声纳实现对周围物体的探测,即声纳通过接收水下目标发出声波或接收目标反射声纳本发射的声波来确定目标的方位、距离,从而达到对海底状况的观察。声纳分被动声纳和主动声纳两种,被动声纳通过接收水中目标发出的声波来探测目标,  相似文献   

2.
潜艇是一种隐蔽性良好的水下作战平台,低噪声是其生命力的保障,但在对目标进攻鱼雷攻击时会因为发射噪声过大而暴露发射阵位和影响鱼雷攻击效果.分析了潜艇鱼雷发射噪声对潜艇的占位射击可行域存在的影响,在目标舰探测到发射噪声后采取规避措施的态势下,对自导鱼雷在不同命中角情况下的命中概率进行了仿真计算,并给出了计算模型.仿真的结果可为发射噪声的限制指标提出参考.  相似文献   

3.
线导鱼雷及其关键技术   总被引:1,自引:0,他引:1  
鱼雷是反潜作战的主要武器之一,二战以来得到了极大的发展。目前,世界各国使用的和正在研制的鱼雷有几十种型号,包括热动力鱼雷、电动力鱼雷、尾流自导鱼雷和线导鱼雷等。潜艇技术的不断提高,以及水下环境的日趋复杂,使得各国对鱼雷制导技术提出了更高的要求。线导鱼雷使用导线或光纤将发射平台和鱼雷连接起来,使发射平台的火控系统与雷上的装置组成回路,用以对鱼雷进行遥控,引导鱼雷接近、  相似文献   

4.
潜艇是重要的水下作战武备,其携带的水下武器主要靠武器发射系统来完成。由于潜艇作战条件复杂,因此,潜艇对水下武器发射系统有特殊的要求,主要表现在它的安全性方面,其中包括是否有利于武器的安全装载、储藏、操控、发射等。衡量一套理想的潜艇武器发射系统的标准主要看以下几个方面能否满足要求:水下发射武器所需的速度,不受潜艇航行速度或深度的限制;发射装置具有较高的安全性和可靠性,较低的发射噪声信号;需要较小的发射能量,较小的发射空间;发射装置的重量、成本和通用性。  相似文献   

5.
本文提出了一种改善潜艇现有天线接收性能的方法,从而解决了在潜艇上安装使用劳兰C导航仪的关键技术问题。  相似文献   

6.
二、潜地导弹水下发射试验潜地导弹武器系统在完成了陆上发射台、陆上发射筒的飞行试验后,进入了在潜艇上进行水下发射固体导弹的飞行试验阶段。该试验分3步进行:在常规动力潜艇上进行潜地导弹水下发射试验;在导弹核潜艇上进行潜地导弹水下发射试验;在导弹核潜艇上进行潜地导弹定型试验。1.先期准备60年代末,为适应导弹核潜艇发射潜地导弹试验的需要,中央军委决定,由海军试  相似文献   

7.
美国潜艇技术取得新突破 为水下潜艇开发出了双向无线电通讯系统。2008年3月4日,美国海军空间和海上作战系统司令部(SPAWAR)的一位高层官员表示,美国海军历史上首次利用浮漂天线及浮标开发出了水下潜艇双向通讯系统。此前,潜艇只有保持在潜望镜深度的范围内,  相似文献   

8.
针对潜艇水下低速航行时的操艇安全问题,在对潜艇水下低速航行工况的概念和使用时机进行分析的基础上,根据艇体和首、尾水平舵的水动力特性,结合实艇使用经验,研究并总结出潜艇水下低速航行时的安全操纵控制技术。这些技术对保障潜艇在水下低速航行时的操艇安全具有实际指导意义。  相似文献   

9.
形形色色的无人潜艇   总被引:1,自引:0,他引:1  
无人潜艇是指以海中活动为目的的海中机器人,现主要用于完成扫除水雷和侦察、通信等任务。未来,智能性潜艇将获得空前发展,并在海战中发挥越来越重要的作用。无人潜艇作为一种方兴未艾的水下作战高技术武器,近年来备受世人瞩目,许多国家都在按照本国国情大力进行开发。 无人潜艇种类繁多,根据其开发和利用情况,可大致分为遥控潜水艇型、半浮半沉型以及能携带武器进行自主作战的智能型无人潜艇等。“排雷高手”:有线遥控无人潜艇 这种无人潜艇共分两种。一种装有空心装药破甲弹头,使用时通过有线遥控接近水  相似文献   

10.
为了实现实测波浪作用下水下航行体出水成功概率预报,为潜艇作战提供一种水下发射的快速预报方法,基于边界元方法建立了水下航行体出水姿态计算模型,对不同波浪条件下水下航行体出水姿态参数进行了计算。同时,将不同波浪条件下的出水姿态参数进行集成,形成了规则波浪数据库。以渤海湾某时间段的实测海况作为发射环境,建立符合瑞利分布的波高概率分布模型,将尾部触水俯仰角作为判定条件,对实测波浪下水下航行体出水成功概率进行预报。计算结果表明,在考虑最恶劣工况下,相对于静水条件下的出水俯仰角偏差随着波高的增加而减小;相同波高下,受到出水相位的影响,出水俯仰角偏差呈余弦变化规律。该预报方法对于潜艇作战判定发射时机具有一定参考价值,为水下发射的成功概率预报提供参考。  相似文献   

11.
时域TEM喇叭天线的分析和设计   总被引:1,自引:0,他引:1       下载免费PDF全文
TEM喇叭是一种超宽带天线,但迄今为止大都是利用频域的概念来研究的。本节从波模理论出发,提出喇叭的开口阻抗不能看作真空波阻抗,它与喇叭尺寸、张角有关;由于冲激脉冲有时序性,反射只与局部结构有关。介绍了实际制作的TEM喇叭天线,并给出了实验结果,表明它具有良好的阻抗匹配特性和波形保真性,对时域天线的研究具有很好的理论和实用价值。  相似文献   

12.
毫米波雷达与微波雷达相比,在工作频率、天线、大气传输特性和跟踪精度等方面均有其独特的优点。结合舰载毫米波雷达的典型实例,论述了其在近战武器系统中的应用现状和展望。  相似文献   

13.
为使紧耦合阵列天线在超宽频带内实现电磁性能更佳、辐射性能更稳定的目的,提出一种新型条形频率选择表面宽角阻抗匹配层加载的双极化超宽带紧耦合阵列天线。通过高频仿真软件CST周期边界条件对阵列单元截断并进行研究分析。掌握阵元阻抗和辐射等电磁性能后,优化设计并加工出一个6×6单元的阵列天线进行实际测量。测量结果表明,该天线在2~12 GHz的频带内驻波比均小于3,驻波比带宽为10 GHz。带内辐射特性稳定,主瓣电磁能量集中,交叉极化小。工作频带内,最大增益可以达到13 dBi。该阵列天线可应用于超宽带相控阵天线领域中。  相似文献   

14.
提出一种电磁带隙结构交错排列的单脊波导缝隙相控阵天线,并与相同尺寸的普通单脊波导缝隙相控阵天线作比较。测试结果表明该天线的方向图得到了明显的改善,单元之间的耦合系数减小,背瓣的辐射电平显著降低,扫描特性得到了改善;同时也说明了电磁带隙结构可以取得比扼流槽更好的抑制表面波的效果。这对于提高单脊波导缝隙相控阵天线的辐射性能具有重要意义。  相似文献   

15.
战场区域移动通信系统中,指挥中心实时地将主波束对准作战分队来波方向,而将其他方向的来波作为干扰置零陷,不仅提高了抗干扰能力,而且还可对作战分队进行定位。这一过程是通过跟踪移动用户信号的波达角(DOA)来实现的,传统的高分辨率DOA估计算法,如MUSIC、ESPRIT等算法,无法实现自适应、实时跟踪,因为它需要对接收信号的协方差矩阵反复进行特征值分解或奇异值分解,计算量大。针对这一问题,引入基于改进的信号子空间自适应跟踪的卡尔曼(Kalman)滤波算法,该算法直接从信号子空间中提取DOA的更新,无需从协方差矩阵中提取。仿真结果表明,该算法不仅降低了运算量,而且可跟踪多用户的DOA。  相似文献   

16.
任何天线都有旁瓣,当雷达受到敌方强有源干扰时,进入旁瓣的干扰信号可以淹没主波束接收的目标信号,因而极大地影响了系统性能。为了有效地抑制干扰,在雷达中采用旁瓣对消技术实现空间上的自适应滤波,使来自天线旁瓣的干扰衰减到最小。接收通道的非零带宽和波程差、接收通道频率特性不一致等对旁瓣对消性能有影响。通过仿真对某雷达的旁瓣对消性能进行分析。  相似文献   

17.
一种近地面工作时域天线特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
由于无载频探地雷达是一种近地面时域毫微秒脉冲探测系统,受半无限大有耗媒质界面的限制,所以对近地面时域天线的辐射特性的分析与计算极为困难。研制了一种贴片电阻加载的振子天线,用FDTD方法对其进行的分析和实际应用结果表明天线具有良好的波形保真度、良好的辐射特性和屏蔽效果,可以广泛地应用于探地雷达和其它超宽带系统。  相似文献   

18.
分析了偏轴跟踪抑制多路径误差时雷达低空检测性能。结果表明 ,在近距 ,雷达检测性能由SCR决定 ;在远距 ,由SNR决定 ;雷达天线过低 ,探测空域受过渡距离和视距限制明显 ;天线过高 ,探测空域受地杂波影响明显。  相似文献   

19.
为研究对数周期天线(LPGA)的方波脉冲响应特性,利用GTEM室和CST仿真软件对LPGA方波脉冲响应信号进行实验测试与仿真分析.利用实验室自行研制的超宽带电场测试系统对GTEM室进行校准,得到了室内电场强度E(t)与方波源的输出电压V(t)和芯板高度h之间的关系;搭建GTEM室中天线脉冲响应测试平台,得到不同辐照方向下的LPGA方波脉冲时域响应信号;利用CST仿真软件建立对数周期天线的3D模型,得到响应信号幅值的开路电路模型.  相似文献   

20.
现代战场复杂电磁环境严重威胁无线电引信战技性能的发挥.为了提出复杂电磁环境中降低无线电引信意外发火概率的防护对策,在简要介绍了实验装置与方法的基础上,研究了无线电引信的等幅正弦波辐照效应.确定了天线及弹体是造成引信意外发火的主要能量耦合通道,引信意外发火及作用机理是:引信天线及弹体接收正弦波信号,使引信高频电路工作状态发生变化,引信检波电压波动,最终导致引信意外发火.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号