首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For each n, X1(n),…, Xn(n) are independent and identically distributed random variables, each with cumulative distribution function F(x) which is known to be absolutely continuous but is otherwise unknown. The problem is to test the hypothesis that \documentclass{article}\pagestyle{empty}\begin{document}$ F(x) = G\left( {{\textstyle{{x - \theta _1 } \over {\theta _2 }}}} \right) $\end{document}, where the cumulative distribution function Gx is completely specified and satisfies certain regularity conditions, and the parameters θ1, θ2 are unknown and unspecified, except that the scale parameter θ2, is positive. Y1 (n) ≦ Y2 (n) ≦ … ≦ Yn (n)are the ordered values of X1(n),…, Xn(n). A test based on a certain subset of {Yi(n)} is proposed, is shown to have asymptotically a normal distribution when the hypothesis is true, and is shown to be consistent against all alternatives satisfying a mild regularity condition.  相似文献   

2.
We present a branch and bound algorithm to solve mathematical programming problems of the form: Find x =|(x1,…xn) to minimize Σ?i0(x1) subject to x?G, l≦x≦L and Σ?i0(x1)≦0, j=1,…,m. With l=(l1,…,ln) and L=(L1,…,Ln), each ?ij is assumed to be lower aemicontinuous and piecewise convex on the finite interval [li.Li]. G is assumed to be a closed convex set. The algorithm solves a finite sequence of convex programming problems; these correspond to successive partitions of the set C={x|l ≦ x ≦L} on the bahis of the piecewise convexity of the problem functions ?ij. Computational considerations are discussed, and an illustrative example is presented.  相似文献   

3.
Let X1 < X2 <… < Xn denote an ordered sample of size n from a Weibull population with cdf F(x) = 1 - exp (?xp), x > 0. Formulae for computing Cov (Xi, Xj) are well known, but they are difficult to use in practice. A simple approximation to Cov(Xi, Xj) is presented here, and its accuracy is discussed.  相似文献   

4.
This paper is concerned with estimating p = P(X1 < Y …, Xn < Y) or q =P (X < Y1, …, X < Yn) where the X's and Y's are all independent random variables. Applications to estimation of the reliability p from stress-strength relationships are considered where a component is subject to several stresses X1, X2, …, XN whereas its strength, Y, is a single random variable. Similarly, the reliability q is of interest where a component is made of several parts all with their individual strengths Y1, Y2 …, YN and a single stress X is applied to the component. When the X's and Y's are independent and normal, maximum likelihood estimates of p and q have been obtained. For the case N = 2 and in some special cases, minimum variance unbiased estimates have been given. When the Y's are all exponential and the X is normal with known variance, but unknown mean (or uniform between 0 and θ, θ being unknown) the minimum variance unbiased estimate of q is established in this paper.  相似文献   

5.
Let (Y, Xl,…, XK) be a random vector distributed according to a multivariate normal distribution where Xl,…, XK are considered as predictor variables and y is the predictand. Let ri, and Ri denote the population and sample correlation coefficients, respectively, between Y and Xi. The population correlation coefficient ri is a measure of the predictive power of Xi. The author has derived the joint distribution of Rl,…, RK and its asymptotic property. The given result is useful in the problem of selecting the most important predictor variable corresponding to the largest absolute value of ri.  相似文献   

6.
Consider an experiment in which only record-breaking values (e.g., values smaller than all previous ones) are observed. The data available may be represented as X1,K1,X2,K2, …, where X1,X2, … are successive minima and K1,K2, … are the numbers of trials needed to obtain new records. Such data arise in life testing and stress testing and in industrial quality-control experiments. When only a single sequence of random records are available, efficient estimation of the underlying distribution F is possible only in a parametric framework (see Samaniego and Whitaker [9]). In the present article we study the problem of estimating certain population quantiles nonparametrically from such data. Furthermore, under the assumption that the process of observing random records can be replicated, we derive and study the nonparametric maximum-likelihood estimator F̂ of F. We establish the strong uniform consistency of this estimator as the number of replications grows large, and identify its asymptotic distribution theory. The performance of F̂ is compared to that of two possible competing estimators.  相似文献   

7.
Let X be a positive random variable. The distribution F of X is said to be “new better than used in expectation,” or “NBUE,” if E(X)E(Xt|X > t) for all t ⩾ 0. Suppose X1, …, Xn, is a random sample from an NBUE distribution F. The problem of estimating F by a distribution which is itself NBUE is considered. The estimator Gn, defined as the NBUE distribution supported on the sample which minimizes the (sup norm) distance between the NBUE class and the empirical distribution function, is studied. The strong uniform consistency of Gn, is proven, and a numerical algorithm for obtaining Gn, is given. Our approach is applied to provide an estimate of the distribution of lifetime following the diagnosis of chronic granulocytic leukemia based on data from a National Cancer Institute study.  相似文献   

8.
For each n, X1(n),…Xn(n) are independent and identically distributed random variables, with common probability density function Where c, θ, α, and r(y) are all unknown. It is shown that we can make asymptotic inferences about c, θ, and α, when r(y) satisfies mild conditions.  相似文献   

9.
The discounted return associated with a finite state Markov chain X1, X2… is given by g(X1)+ αg(X2) + α2g(X3) + …, where g(x) represents the immediate return from state x. Knowing the transition matrix of the chain, it is desired to compute the expected discounted return (present worth) given the initial state. This type of problem arises in inventory theory, dynamic programming, and elsewhere. Usually the solution is approximated by solving the system of linear equations characterizing the expected return. These equations can be solved by a variety of well-known methods. This paper describes yet another method, which is a slight modification of the classical iterative scheme. The method gives sequences of upper and lower bounds which converge mono-tonely to the solution. Hence, the method is relatively free of error control problems. Computational experiments were conducted which suggest that for problems with a large number of states, the method is quite efficient. The amount of computation required to obtain the solution increases much slower with an increase in the number of states, N, than with the conventional methods. In fact, computational time is more nearly proportional to N2, than to N3.  相似文献   

10.
An approximation for P(X2 + Y2 ≤ K2σ21) based on an unpublished result of Kleinecke is derived, where X and Y are independent normal variables having zero means and variances σ21 and σ22 and σ1 ≥ σ2. Also, we provide asymptotic expressions for the probabilities for large values of β = K2(1 - c2)/4c2 where c = σ21. These are illustrated by comparing with values tabulated by Harter [6]. Solution of K for specified P and c is also considered. The main point of this note is that simple and easily calculable approximations for P and K can be developed and there is no need for numerical evaluation of integrals.  相似文献   

11.
Consider an auction in which increasing bids are made in sequence on an object whose value θ is known to each bidder. Suppose n bids are received, and the distribution of each bid is conditionally uniform. More specifically, suppose the first bid X1 is uniformly distributed on [0, θ], and the ith bid is uniformly distributed on [Xi?1, θ] for i = 2, …?, n. A scenario in which this auction model is appropriate is described. We assume that the value θ is un known to the statistician and must be esimated from the sample X1, X2, …?, Xn. The best linear unbiased estimate of θ is derived. The invariance of the estimation problem under scale transformations in noted, and the best invariant estimation problem under scale transformations is noted, and the best invariant estimate of θ under loss L(θ, a) = [(a/θ) ? 1]2 is derived. It is shown that this best invariant estimate has uniformly smaller mean-squared error than the best linear unbiased estimate, and the ratio of the mean-squared errors is estimated from simulation experiments. A Bayesian formulation of the estimation problem is also considered, and a class of Bayes estimates is explicitly derived.  相似文献   

12.
We study a class of new scheduling problems which involve types of teamwork tasks. Each teamwork task consists of several components, and requires a team of processors to complete, with each team member to process a particular component of the task. Once the processor completes its work on the task, it will be available immediately to work on the next task regardless of whether the other components of the last task have been completed or not. Thus, the processors in a team neither have to start, nor have to finish, at the same time as they process a task. A task is completed only when all of its components have been processed. The problem is to find an optimal schedule to process all tasks, under a given objective measure. We consider both deterministic and stochastic models. For the deterministic model, we find that the optimal schedule exhibits the pattern that all processors must adopt the same sequence to process the tasks, even under a general objective function GC = F(f1(C1), f2(C2), … , fn(Cn)), where fi(Ci) is a general, nondecreasing function of the completion time Ci of task i. We show that the optimal sequence to minimize the maximum cost MC = max fi(Ci) can be derived by a simple rule if there exists an order f1(t) ≤ … ≤ fn(t) for all t between the functions {fi(t)}. We further show that the optimal sequence to minimize the total cost TC = ∑ fi(Ci) can be constructed by a dynamic programming algorithm. For the stochastic model, we study three optimization criteria: (A) almost sure minimization; (B) stochastic ordering; and (C) expected cost minimization. For criterion (A), we show that the results for the corresponding deterministic model can be easily generalized. However, stochastic problems with criteria (B) and (C) become quite difficult. Conditions under which the optimal solutions can be found for these two criteria are derived. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

13.
Two new randomization tests are introduced for ordinal contingency tables for testing independence against strictly positive quadrant dependence, i.e., P(X > x,Y > y) ≥ P(X > x)P(Y > y) for all x,y with strict inequality for some x and y. For a number of cases, simulation is used to compare the estimated power of these tests versus those standard tests based on Kendall's T, Spearman's p, Pearson's X2, the usual likelihood ratio test, and a test based upon the log-odds ratio. In these cases, subsets of the alternative region are identified where each of the testing statistics is superior. The new tests are found to be more powerful than the standard tests over a broad range of the alternative regions for these cases.  相似文献   

14.
Consider an experiment in which only record-breaking values (e.g., values smaller than all previous ones) are observed. The data available may be represented as X1,K1,X2,K2, …, where X1,X2, … are successive minima and K1,K2, … are the numbers of trials needed to obtain new records. We treat the problem of estimating the mean of an underlying exponential distribution, and we consider both fixed sample size problems and inverse sampling schemes. Under inverse sampling, we demonstrate certain global optimality properties of an estimator based on the “total time on test” statistic. Under random sampling, it is shown than an analogous estimator is consistent, but can be improved for any fixed sample size.  相似文献   

15.
In a variety of industrial situations experimental outcomes are only record-breaking observations. The data available may be represented as X1, K1., X2, K2,…, where X1, X2,… are the successive minima and K1, K2, … are the number of trials needed to obtain new records. Samaniego and Whitaker [11, 12] discussed the problem of estimating the survival function in both parametric and nonparametric setups when the data consisted of record-breaking observations. In this article we derive nonparametric Bayes and empirical Bayes estimators of the survival function for such data under a Dirichlet process prior and squared error loss. Furthermore, under the assumptions that the process of observing random records can be replicated, the weak convergence of the Bayes estimator is studied as the number of replications grows large. The calculations involved are illustrated by adopting Proschan's [9] data on successive failure times of air conditioning units on Boeing aircraft, for our purpose. The nonparametric maximum likelihood estimators of the survival function for different choices of the prior are displayed for comparison purposes.  相似文献   

16.
Suppose that observations from populations π1, …, πk (k ≥ 1) are normally distributed with unknown means μ1., μk, respectively, and a common known variance σ2. Let μ[1] μ … ≤ μ[k] denote the ranked means. We take n independent observations from each population, denote the sample mean of the n observation from π1 by X i (i = 1, …, k), and define the ranked sample means X [1] ≤ … ≤ X [k]. The problem of confidence interval estimation of μ(1), …,μ[k] is stated and related to previous work (Section 1). The following results are obtained (Section 2). For i = 1, …, k and any γ(0 < γ < 1) an upper confidence interval for μ[i] with minimal probability of coverage γ is (? ∞, X [i]+ h) with h = (σ/n1/2) Φ?11/k-i+1), where Φ(·) is the standard normal cdf. A lower confidence interval for μ[i] with minimal probability of coverage γ is (X i[i]g, + ∞) with g = (σ/n1/2) Φ?11/i). For the upper confidence interval on μ[i] the maximal probability of coverage is 1– [1 – γ1/k-i+1]i, while for the lower confidence interval on μ[i] the maximal probability of coverage is 1–[1– γ1/i] k-i+1. Thus the maximal overprotection can always be calculated. The overprotection is tabled for k = 2, 3. These results extend to certain translation parameter families. It is proven that, under a bounded completeness condition, a monotone upper confidence interval h(X 1, …, X k) for μ[i] with probability of coverage γ(0 < γ < 1) for all μ = (μ[1], …,μ[k]), does not exist.  相似文献   

17.
Suppose X is a random variable having an absolutely continuous distribution function F(x). We assume that F(x) has the Wald distribution. A relation between the probability density function of X−1 with that of X is used to characterize the Wald distribution.  相似文献   

18.
Consider a two machine flow shop and n jobs. The processing time of job j on machine i is equal to the random variable Xij One of the two machines is subject to breakdown and repair. The objective is to find the schedule that minimizes the expected makespan. Two results are shown. First, ifP(X2j ≧ X1j) = 1 for all j and the random variables X11, X12,…, X1n are likelihood ratio ordered, then the SEPT sequence minimizes the expected makespan when machine 2 is subject to an arbitrary breakdown process; if P(X1j≧X2j) = 1 and X21, X22,….,X2n are likelihood ratio ordered, then the LEPT sequence minimizes the expected makespan when machine 1 is subject to an arbitrary breakdown process. A generalization is presented for flow shops with m machines. Second, consider the case where X1j and X2j are i.i.d. exponentially distributed with rate λj. The SEPT sequence minimizes the expected makespan when machine 2 is subject to an arbitrary breakdown process and the LEPT sequence is optimal when machine 1 is subject to an arbitrary breakdown process. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Let Xt, t = 1,2, ?, be a stationary Gaussian Markov process with E(Xt) = μ and Cov(Xt, Xt+k) = σ2ρk. We derive a prediction interval for X2n+1 based on the preceding 2n observations X1,X2, ?,X2n.  相似文献   

20.
A statistic is determined for testing the hypothesis of equality for scale parameters from two populations, each of which has the first asymptotic distribution of smallest (extreme) values. The probability distribution is derived for this statistic, and critical values are determined and given in tabular form for a one-sided or two-sided alternative, for censored samples of size n1 and n2, n1 = 2, 3, …. 6, n2 = 2, 3, …. 6. The power function of the test for certain alternatives is also calculated and listed in each case considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号