首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
An inventory system that consists of a depot (central warehouse) and retailers (regional warehouses) is considered. The system is replenished regularly on a fixed cycle by an outside supplier. Most of the stock is direct shipped to the retailer locations but some stock is sent to the central warehouse. At the beginning of any one of the periods during the cycle, the central stock can then be completely allocated out to the retailers. In this paper we propose a heuristic method to dynamically (as retailer inventory levels change with time) determine the appropriate period in which to do the allocation. As the optimal method is not tractable, the heuristic's performance is compared against two other approaches. One presets the allocation period, while the other provides a lower bound on the expected shortages of the optimal solution, obtained by assuming that we know ahead of time all of the demands, period by period, in the cycle. The results from extensive simulation experiments show that the dynamic heuristic significantly outperforms the “preset” approach and its performance is reasonably close to the lower bound. Moreover, the logic of the heuristic is appealing and the calculations, associated with using it, are easy to carry out. Sensitivities to various system parameters (such as the safety factor, coefficient of variation of demand, number of regional warehouses, external lead time, and the cycle length) are presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

2.
The two inventory echelons under consideration are the depot, D, and k tender ships E1, …, Ek. The tender ships supply the demand for certain parts of operational boats (the customers). The statistical model assumes that the total monthly demands at the k tenders are stationary independent Poisson random variables, with unknown means λ1, …, λk. The stock levels on the tenders, at the heginning of each month, can be adjusted either by ordering more units from the depot, or by shipping bach to the depot an excess stock. There is no traffic of stock between tenders which is not via the depot. The lead time from the depot to the tenders is at most 1 month. The lead time for orders of the depot from the manufacturer is L months. The loss function due to erroneous decision js comprised of linear functions of the extra monthly stocks, and linear functions of shortages at the tenders and at the depot over the N months. A Bayes sequential decision process is set up for the optimal adjustment levels and orders of the two echelons. The Dynamic Programming recursive functions are given for a planning horizon of N months.  相似文献   

3.
Consider a distribution system with a central warehouse and multiple retailers. Customer demand arrives at each of the retailers continuously at a constant rate. The retailers replenish their inventories from the warehouse which in turn orders from an outside supplier with unlimited stock. There are economies of scale in replenishing the inventories at both the warehouse and the retail level. Stockouts at the retailers are backlogged. The system incurs holding and backorder costs. The objective is to minimize the long‐run average total cost in the system. This paper studies the cost effectiveness of (R, Q) policies in the above system. Under an (R, Q) policy, each facility orders a fixed quantity Q from its supplier every time its inventory position reaches a reorder point R. It is shown that (R, Q) policies are at least 76% effective. Numerical examples are provided to further illustrate the cost effectiveness of (R, Q) policies. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 422–439, 2000  相似文献   

4.
Considered is a two-level inventory system with one central warehouse and N retailers facing different independent compound Poisson demand processes. The retailers replenish from the warehouse and the warehouse from an outside supplier. All facilities apply continuous review installation stock (R, Q) policies with different reorder points and batch quantities. Presented is a new approximate method for evaluation of holding and shortage costs, which can be used to select optimal policies. The accuracy of the approximation is evaluated by comparison with exact and simulated results. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Multi-depot supply systems are subject to stock distribution imbalances; i. e., the fraction of total system stock located at a depot may be too small to support the fraction of system demand expected to be placed on it. In the supply system of concern, a cutomer is always satisfied if there is stock anywhere in the system. Stock redistributions to correct imbalances may reduce both transportation costs and customer waiting times. A model for determining optimum redistribution quantities is formulated, and a practical method of solution for the two depot case is described. Selected numerical illustrations are given.  相似文献   

6.
The optimization problem as formulated in the METRIC model takes the form of minimizing the expected number of total system backorders in a two-echelon inventory system subject to a budget constraint. The system contains recoverable items – items subject to repair when they fail. To solve this problem, one needs to find the optimal Lagrangian multiplier associated with the given budget constraint. For any large-scale inventory system, this task is computationally not trivial. Fox and Landi proposed one method that was a significant improvement over the original METRIC algorithm. In this report we first develop a method for estimating the value of the optimal Lagrangian multiplier used in the Fox-Landi algorithm, present alternative ways for determining stock levels, and compare these proposed approaches with the Fox-Landi algorithm, using two hypothetical inventory systems – one having 3 bases and 75 items, the other 5 bases and 125 items. The comparison shows that the computational time can be reduced by nearly 50 percent. Another factor that contributes to the higher requirement for computational time in obtaining the solution to two-echelon inventory systems is that it has to allocate stock optimally to the depot as well as to bases for a given total-system stock level. This essentially requires the evaluation of every possible combination of depot and base stock levels – a time-consuming process for many practical inventory problems with a sizable system stock level. This report also suggests a simple approximation method for estimating the optimal depot stock level. When this method was applied to the same two hypotetical inventory systems indicated above, it was found that the estimate of optimal depot stock is quite close to the optimal value in all cases. Furthermore, the increase in expected system backorders using the estimated depot stock levels rather than the optimal levels is generally small.  相似文献   

7.
We consider an inventory system with one warehouse and N retailers. Transportation times are constant and the retailers face independent Poisson demand. Each facility applies a periodic review order-up-to-S policy. In case of shortages at the warehouse, orders for individual units are filled in the same order as the original demand at the retailers, i.e., according to a so-called virtual allocation scheme. Using that the considered policy is very similar to a continuous review one-for-one ordering policy, we are able to provide simple recursive procedures for exact evaluation of holding and shortage costs. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
We consider a distribution system consisting of a central warehouse and a group of retailers facing independent stochastic demand. The retailers replenish from the warehouse, and the warehouse from an outside supplier with ample supply. Time is continuous. Most previous studies on inventory control policies for this system have considered stock‐based batch‐ordering policies. We develop a time‐based joint‐replenishment policy in this study. Let the warehouse set up a basic replenishment interval. The retailers are replenished through the warehouse in intervals that are integer multiples of the basic replenishment interval. No inventory is carried at the warehouse. We provide an exact evaluation of the long‐term average system costs under the assumption that stock can be balanced among the retailers. The structural properties of the inventory system are characterized. We show that, although it is well known that stock‐based inventory control policies dominate time‐based inventory control policies at a single facility, this dominance does not hold for distribution systems with multiple retailers and stochastic demand. This is because the latter can provide a more efficient mechanism to streamline inventory flow and pool retailer demand, even though the former may be able to use more updated stock information to optimize system performance. The findings of the study provide insights about the key factors that drive the performance of a multiechelon inventory control system. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 637–651, 2013  相似文献   

9.
This paper introduces a new replenishment policy for inventory control in a two‐level distribution system consisting of one central warehouse and an arbitrary number of nonidentical retailers. The new policy is designed to control the replenishment process at the central warehouse, using centralized information regarding the inventory positions and demand processes of all installations in the system. The retailers on the other hand are assumed to use continuous review (R, Q) policies. A technique for exact evaluation of the expected inventory holding and backorder costs for the system is presented. Numerical results indicate that there are cases when considerable savings can be made by using the new (α0, Q0) policy instead of a traditional echelon‐ or installation‐stock (R, Q) policy. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 798–822, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10040  相似文献   

10.
In peacetime, base stock levels of spares are determined on the assumption of normal resupply from the depot. In the event of war, however, a unit must be prepared to operate from stock on hand for a period of time without being resupplied from the depot. This paper describes a mathematical model for determining such war reserve spares (WRS) requirements. Specifically, the model solves the following kind of optimization problem: find the least-cost WRS kits that will keep the probability of a stockout after K cannibalizations less than or equal to some target objective α. The user of the model specifies the number of allowable cannibalizations, and the level of protection that the kit is supposed to provide. One interesting feature of this model is that in the probability computation it takes into account the possiblility of utilizing normal base operating assets. Results of a sensitivity analysis indicate that if peacetime levels were explicitly taken into account when designing a WRS kit, a cost saving of nearly 40 percent could be effected without degrading base supply performance in wartime.  相似文献   

11.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

12.
A transportation system has N vehicles with no capacity constraint which take passengers from a depot to various destinations and return to the depot. The trip times are considered to be independent and identically distributed random variables. The dispatch strategy at the depot is to dispatch immediately, or to hold any returning vehicles with the objective of minimizing the average wait per passenger at the depot, if passengers arrive at a uniform rate. Optimal control strategies and resulting waits are determined in the special case of exponentially distributed trip time for various N up to N = 15. For N ? 1, the nature of the solution is always to keep a reservoir of vehicles in the depot, and to decrease (increase) the time headway between dispatches as the size of the reservoir gets larger (smaller). For sufficiently large N, one can approximate the number of vehicles in the reservoir by a continuum and obtain analytic experession for the optimal dispatch rate as a function of the number of vehicles in the reservoir. For the optimal strategy, it is shown that the average number of vehicles in the depot is of order N1/3. These limit properties are expected to be quite insensitive to the actual trip time distribution, but the convergence of the exact properties to the continuum approximation as N → ∞ is very slow.  相似文献   

13.
We consider a multi‐stage inventory system composed of a single warehouse that receives a single product from a single supplier and replenishes the inventory of n retailers through direct shipments. Fixed costs are incurred for each truck dispatched and all trucks have the same capacity limit. Costs are stationary, or more generally monotone as in Lippman (Management Sci 16, 1969, 118–138). Demands for the n retailers over a planning horizon of T periods are given. The objective is to find the shipment quantities over the planning horizon to satisfy all demands at minimum system‐wide inventory and transportation costs without backlogging. Using the structural properties of optimal solutions, we develop (1) an O(T2) algorithm for the single‐stage dynamic lot sizing problem; (2) an O(T3) algorithm for the case of a single‐warehouse single‐retailer system; and (3) a nested shortest‐path algorithm for the single‐warehouse multi‐retailer problem that runs in polynomial time for a given number of retailers. To overcome the computational burden when the number of retailers is large, we propose aggregated and disaggregated Lagrangian decomposition methods that make use of the structural properties and the efficient single‐stage algorithm. Computational experiments show the effectiveness of these algorithms and the gains associated with coordinated versus decentralized systems. Finally, we show that the decentralized solution is asymptotically optimal. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

14.
Assemble‐to‐order (ATO) is an important operational strategy for manufacturing firms to achieve quick response to customer orders while keeping low finished good inventories. This strategy has been successfully used not only by manufacturers (e.g., Dell, IBM) but also by retailers (e.g., Amazon.com). The evaluation of order‐based performance is known to be an important but difficult task, and the existing literature has been mainly focused on stochastic comparison to obtain performance bounds. In this article, we develop an extremely simple Stein–Chen approximation as well as its error‐bound for order‐based fill rate for a multiproduct multicomponent ATO system with random leadtimes to replenish components. This approximation gives an expression for order‐based fill rate in terms of component‐based fill rates. The approximation has the property that the higher the component replenishment leadtime variability, the smaller the error bound. The result allows an operations manager to analyze the improvement in order‐based fill rates when the base‐stock level for any component changes. Numerical studies demonstrate that the approximation performs well, especially when the demand processes of different components are highly correlated; when the components have high base‐stock levels; or when the component replenishment leadtimes have high variability. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

15.
We address infinite‐horizon models for oligopolies with competing retailers under demand uncertainty. We characterize the equilibrium behavior which arises under simple wholesale pricing schemes. More specifically, we consider a periodic review, infinite‐horizon model for a two‐echelon system with a single supplier servicing a network of competing retailers. In every period, each retailer faces a random demand volume, the distribution of which depends on his own retail price as well as those charged by possibly all competing retailers. We also derive various comparative statics results regarding the impact several exogenous system parameters (e.g., cost or distributional parameters) have on the equilibrium decisions of the retailers as well as their expected profits. We show that certain monotonicity properties, engrained in folklore as well as in known inventory models for centralized systems, may break down in decentralized chains under retailer competition. Our results can be used to optimize the aggregate profits in the supply chain (i.e., those of the supplier and all retailers) by implementing a specific wholesale pricing scheme. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

16.
We consider an inventory system with one warehouse and N retailers. All installations apply different order-up-to-S policies. Transportation times are constant and the retailers face compound Poisson demand. We provide a simple recursive procedure for the evaluation of holding and shortage costs for different control policies. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
The main objective of this paper is to develop a mathematical model for a particular type of three-echelon inventory system. The proposed model is being used by the Air Force to evaluate inventory investment requirements for alternative logistic structures. The system we will model consists of a group of locations, called bases, and a central depot. The items of concern in our analysis are called recoverable items, that is, items that can be repaired when they fail. Furthermore, each item has a modular or hierarchical design. Briefly, the model is used to determine the stock levels at each location for each item so as to achieve optimum inventory-system performance for a given level of investment. An algorithm for the computation of stock levels for each item and location is developed and illustrated. Some of the ways the model can be used are illustrated with Air Force data.  相似文献   

18.
Substitutable product inventory problem is analyzed using the concepts of stochastic game theory. It is assumed that there are two substitutable products that are sold by different retailers and the demand for each product is random. Game theoretic nature of this problem is the result of substitution between products. Since retailers compete for the substitutable demand, ordering decision of each retailer depends on the ordering decision of the other retailer. Under the discounted payoff criterion, this problem is formulated as a two‐person nonzero‐sum stochastic game. In the case of linear ordering cost, it is shown that there exists a Nash equilibrium characterized by a pair of stationary base stock strategies for the infinite horizon problem. This is the unique Nash equilibrium within the class of stationary base stock strategies. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 359–375, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10018  相似文献   

19.
We consider a problem of optimal division of stock between a logistic depot and several geographically dispersed bases, in a two‐echelon supply chain. The objective is to minimize the total cost of inventory shipment, taking into account direct shipments between the depot and the bases, and lateral transshipments between bases. We prove the convexity of the objective function and suggest a procedure for identifying the optimal solution. Small‐dimensional cases, as well as a limit case in which the number of bases tends to infinity, are solved analytically for arbitrary distributions of demand. For a general case, an approximation is suggested. We show that, in many practical cases, partial pooling is the best strategy, and large proportions of the inventory should be kept at the bases rather than at the depot. The analytical and numerical examples show that complete pooling is obtained only as a limit case in which the transshipment cost tends to infinity. © 2017 Wiley Periodicals, Inc. Naval Research Logistics, 64: 3–18, 2017  相似文献   

20.
We consider a two‐level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order‐up‐to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot‐sizing problem, we cannot assume that the initial inventory will be zero without loss of generality. We propose a strong mixed integer program formulation for the problem with zero and nonzero initial inventories at the warehouse. The strong formulation for the zero initial inventory case has only T binary variables and represents the convex hull of the feasible region of the problem when there is only one retailer. Computational results with a state‐of‐the art solver reveal that our formulations are very effective in solving large‐size instances to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号