首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   12篇
  2021年   8篇
  2019年   16篇
  2018年   10篇
  2017年   16篇
  2016年   12篇
  2015年   13篇
  2013年   135篇
  2011年   6篇
  2010年   8篇
  2008年   6篇
  2007年   9篇
  2006年   9篇
  2005年   15篇
  2004年   10篇
  2003年   8篇
  2000年   11篇
  1999年   8篇
  1998年   5篇
  1997年   10篇
  1996年   16篇
  1995年   9篇
  1994年   15篇
  1993年   8篇
  1992年   10篇
  1991年   18篇
  1990年   10篇
  1989年   17篇
  1988年   11篇
  1987年   15篇
  1986年   16篇
  1985年   14篇
  1984年   10篇
  1983年   10篇
  1982年   14篇
  1981年   9篇
  1980年   14篇
  1979年   9篇
  1978年   10篇
  1977年   10篇
  1976年   10篇
  1975年   9篇
  1974年   15篇
  1973年   13篇
  1972年   14篇
  1971年   19篇
  1970年   6篇
  1969年   10篇
  1968年   7篇
  1967年   5篇
  1948年   5篇
排序方式: 共有700条查询结果,搜索用时 31 毫秒
581.
The paper considers the open shop scheduling problem to minimize the make-span, provided that one of the machines has to process the jobs according to a given sequence. We show that in the preemptive case the problem is polynomially solvable for an arbitrary number of machines. If preemption is not allowed, the problem is NP-hard in the strong sense if the number of machines is variable, and is NP-hard in the ordinary sense in the case of two machines. For the latter case we give a heuristic algorithm that runs in linear time and produces a schedule with the makespan that is at most 5/4 times the optimal value. We also show that the two-machine problem in the nonpreemptive case is solvable in pseudopolynomial time by a dynamic programming algorithm, and that the algorithm can be converted into a fully polynomial approximation scheme. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 705–731, 1998  相似文献   
582.
We explore the management of inventory for stochastic-demand systems, where the product's supply is randomly disrupted for periods of random duration, and demands that arrive when the inventory system is temporarily out of stock become a mix of backorders and lost sales. The stock is managed according to the following modified (s, S) policy: If the inventory level is at or below s and the supply is available, place an order to bring the inventory level up to S. Our analysis yields the optimal values of the policy parameters, and provides insight into the optimal inventory strategy when there are changes in the severity of supply disruptions or in the behavior of unfilled demands. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 687–703, 1998  相似文献   
583.
We discuss the problem of scheduling several jobs on a single machine with the objective of minimizing the weighted mean absolute deviation of flow times around the weighted mean flow time. We first show that the optimal schedule is W-shaped. For the unweighted case, we show that all optimal schedules are V-shaped. This characterization enables us to show that the problem is NP-hard. We then provide a pseudopolynomial algorithm for the unweighted problem. Finally, we consider three heuristic algorithms for the unweighted problem and report computational experience with these algorithms. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 297–311, 1998  相似文献   
584.
This article considers the dynamic lot-size problem under discounting, allowing speculative motive for holding inventory. A variable rolling-horizon procedure is presented, which, under certain regularity conditions, is guaranteed to generate an infinite-horizon optimal-production plan. We also discuss a fixed rolling-horizon procedure which provides a production plan that achieves an infinite-horizon cost within a user-specified tolerance ϵ of optimality. The fixed-horizon length T* needed in this procedure is given in terms of a closed-form formula that is independent of specific forecasted demands. We also present computational results for problems with a range of cost parameters and demand characteristics.  相似文献   
585.
This study examines critically the various assumptions, results, and concepts that exist to date in the literature and scientific community concerning the relationships among the Lanchester, stochastic Lanchester, and the general renewal models of combat. Many of the prevailing understandings are shown to be erroneous.  相似文献   
586.
Building evacuation problems can be represented as dynamic network-flow problems [3]. The underlying network structure of a building evolves through time yielding a time-expanded network (a dynamic network). Usually in such evacuation problems involving time, more than one objective function is appropriate. For example, minimizing the total evacuation time and evacuating a portion of the building as early as possible are two such objectives. In this article we show that lexicographical optimization is applicable in handling such multiple objectives. Minimizing the total evacuation time while avoiding cyclic movements in a building and “priority evacuation” are treated as lexicographical min cost flow problems.  相似文献   
587.
588.
An algorithm for determining the optimal, unidirectional flow path for an automated guided vehicle system with a given facility layout is presented. The problem is formulated as an integer program. The objective is to minimize the total distance traveled by vehicles subject to the constraint that the resulting network consists of a single strongly connected component. A specialized branch-and-bound solution procedure is discussed in detail.  相似文献   
589.
We examine the static sequencing problem of ordering the processing of jobs on a single machine so as to minimize the average weighted flow time. It is assumed that all jobs have zero ready times, and that the jobs are grouped into classes with the property that setup tasks are only required when processing switches from jobs of one class to jobs of another class. The time required for each setup task is given by the sum of a setdown time from the previous class and a setup time for the new class. We show that an algorithm presented in the literature for solving a special case of this problem gives suboptimal solutions. A number of properties of the optimal solution are derived, and their use in algorithms is evaluated. Computational results are presented for both a branch-and-bound procedure and a simpler depth-first search.  相似文献   
590.
In this article we present a stochastic model for determining inventory rotation policies for a retail firm which must stock many hundreds of distinctive items having uncertain heterogeneous sales patterns. The model develops explicit decision rules for determining (1) the length of time that an item should remain in inventory before the decision is made on whether or not to rotate the item out of inventory and (2) the minimum sales level necessary for retaining the item in inventory. Two inventory rotation policies are developed, the first of which maximizes cumulative expected sales over a finite planning horizon and the second of which maximizes cumulative expected profit. We also consider the statistical behavior of items having uncertain, discrete, and heterogeneous sales patterns using a two-period prediction methodology where period 1 is used to accumulate information on individual sales rates and this knowledge is then used, in a Bayesian context, to make sales predictions for period 2. This methodology assumes that over an arbitrary time interval sales for each item are Poisson with unknown but stationary mean sales rates and the mean sales rates are distributed gamma across all items. We also report the application of the model to a retail firm which stocks many hundreds of distinctive unframed poster art titles. The application provides some useful insights into the behavior of the model as well as some interesting aspects pertaining to the implementation of the results in a “real-world” situation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号