全文获取类型
收费全文 | 172篇 |
免费 | 0篇 |
专业分类
172篇 |
出版年
2024年 | 2篇 |
2021年 | 3篇 |
2020年 | 3篇 |
2019年 | 7篇 |
2017年 | 4篇 |
2016年 | 5篇 |
2015年 | 7篇 |
2014年 | 2篇 |
2013年 | 27篇 |
2011年 | 5篇 |
2009年 | 2篇 |
2008年 | 2篇 |
2007年 | 4篇 |
2006年 | 2篇 |
2005年 | 3篇 |
2004年 | 4篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 3篇 |
1999年 | 8篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 5篇 |
1991年 | 6篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1988年 | 4篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1982年 | 1篇 |
1981年 | 3篇 |
1979年 | 3篇 |
1978年 | 1篇 |
1977年 | 3篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 4篇 |
1972年 | 1篇 |
1971年 | 4篇 |
1969年 | 2篇 |
1968年 | 3篇 |
1967年 | 1篇 |
1966年 | 2篇 |
1948年 | 1篇 |
排序方式: 共有172条查询结果,搜索用时 15 毫秒
21.
In this article, we discuss the optimal allocation problem in a multiple stress levels life‐testing experiment when an extreme value regression model is used for statistical analysis. We derive the maximum likelihood estimators, the Fisher information, and the asymptotic variance–covariance matrix of the maximum likelihood estimators. Three optimality criteria are defined and the optimal allocation of units for two‐ and k‐stress level situations are determined. We demonstrate the efficiency of the optimal allocation of units in a multiple stress levels life‐testing experiment by using real experimental situations discussed earlier by McCool and Nelson and Meeker. Monte Carlo simulations are used to show that the optimality results hold for small sample sizes as well. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007 相似文献
22.
We consider the problem of scheduling a set of n jobs on a single batch machine, where several jobs can be processed simultaneously. Each job j has a processing time pj and a size sj. All jobs are available for processing at time 0. The batch machine has a capacity D. Several jobs can be batched together and processed simultaneously, provided that the total size of the jobs in the batch does not exceed D. The processing time of a batch is the largest processing time among all jobs in the batch. There is a single vehicle available for delivery of the finished products to the customer, and the vehicle has capacity K. We assume that K = rD, where and r is an integer. The travel time of the vehicle is T; that is, T is the time from the manufacturer to the customer. Our goal is to find a schedule of the jobs and a delivery plan so that the service span is minimized, where the service span is the time that the last job is delivered to the customer. We show that if the jobs have identical sizes, then we can find a schedule and delivery plan in time such that the service span is minimum. If the jobs have identical processing times, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most 11/9 times the optimal service span. When the jobs have arbitrary processing times and arbitrary sizes, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most twice the optimal service span. We also derive upper bounds of the absolute worst‐case ratios in both cases. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 470–482, 2015 相似文献
23.
We consider scheduling a set of jobs with deadlines to minimize the total weighted late work on a single machine, where the late work of a job is the amount of processing of the job that is scheduled after its due date and before its deadline. This is the first study on scheduling with the late work criterion under the deadline restriction. In this paper, we show that (i) the problem is unary NP‐hard even if all the jobs have a unit weight, (ii) the problem is binary NP‐hard and admits a pseudo‐polynomial‐time algorithm and a fully polynomial‐time approximation scheme if all the jobs have a common due date, and (iii) some special cases of the problem are polynomially solvable. 相似文献
24.
This article considers batch scheduling with centralized and decentralized decisions. The context of our study is concurrent open shop scheduling where the jobs are to be processed on a set of independent dedicated machines, which process designated operations of the jobs in batches. The batching policy across the machines can be centralized or decentralized. We study such scheduling problems with the objectives of minimizing the maximum lateness, weighted number of tardy jobs, and total weighted completion time, when the job sequence is determined in advance. We present polynomial time dynamic programming algorithms for some cases of these problems and pseudo‐polynomial time algorithms for some problems that are NP‐hard in the ordinary sense. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 58: 17–27, 2011 相似文献
25.
26.
27.
An algorithm is given for solving minimum-cost flow problems where the shipping cost over an arc is a convex function of the number of units shipped along that arc. This provides a unified way of looking at many seemingly unrelated problems in different areas. In particular, it is shown how problems associated with electrical networks, with increasing the capacity of a network under a fixed budget, with Laplace equations, and with the Max-Flow Min-Cut Theorem may all be formulated into minimum-cost flow problems in convex-cost networks. 相似文献
28.
AbstractThe utilization of health care services by veterans has received much attention in recent years. However, the impact of the large array of factors affecting the veterans’ demand for health care services remains understudied. These factors include individual socio-demographic and economic characteristics, the availability of various sources of health insurance, and the prevalence of medical conditions. We use public data to analyze how veterans’ utilization of health care services varies with these factors. We also analyze how the reliance on VA services varies when alternative sources of health insurance are available to veterans. Based on the estimated relationships, we use a micro-simulation model to forecast future health care utilization, both inside and outside of VA. 相似文献
29.
We consider scheduling problems involving two agents (agents A and B), each having a set of jobs that compete for the use of a common machine to process their respective jobs. The due dates of the A‐jobs are decision variables, which are determined by using the common (CON) or slack (SLK) due date assignment methods. Each agent wants to minimize a certain performance criterion depending on the completion times of its jobs only. Under each due date assignment method, the criterion of agent A is always the same, namely an integrated criterion consisting of the due date assignment cost and the weighted number of tardy jobs. Several different criteria are considered for agent B, including the maxima of regular functions (associated with each job), the total (weighted) completion time, and the weighted number of tardy jobs. The overall objective is to minimize the performance criterion of agent A, while keeping the objective value of agent B no greater than a given limit. We analyze the computational complexity, and devise polynomial or pseudo‐polynomial dynamic programming algorithms for the considered problems. We also convert, if viable, any of the devised pseudopolynomial dynamic programming algorithms into a fully polynomial‐time approximation scheme. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 416–429, 2016 相似文献
30.
Joseph T. Buontempo 《Defense & Security Analysis》2015,31(2):99-109
The Ground-based Midcourse Defense system is intended to protect the US homeland against limited attacks from intermediate- and long-range ballistic missiles. It has succeeded in intercepting target missiles and can engage a threat launched from North Korea or the Middle East, targeting any point in the USA. Nevertheless, high-profile struggles and program changes related to homeland ballistic missile defense (BMD) continue to make headlines. The most significant struggle has been a string of three straight intercept test failures over five years, followed by the recent successful intercept test in June 2014. This article first briefly reviews the current threats of concern. It then examines homeland BMD policy objectives, followed by the current major technical issues in supporting these objectives and, then, the likelihood of negating a warhead. Finally, it highlights major considerations that should be part of the trajectory the US government takes moving forward. 相似文献