首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   40篇
  2021年   2篇
  2019年   5篇
  2018年   2篇
  2017年   5篇
  2016年   11篇
  2015年   15篇
  2014年   9篇
  2013年   69篇
  2012年   10篇
  2011年   7篇
  2010年   4篇
  2009年   8篇
  2008年   9篇
  2007年   11篇
  2006年   8篇
  2005年   11篇
  2004年   7篇
  2003年   12篇
  2002年   10篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1970年   3篇
排序方式: 共有267条查询结果,搜索用时 218 毫秒
51.
Instead of measuring a Wiener degradation or performance process at predetermined time points to track degradation or performance of a product for estimating its lifetime, we propose to obtain the first‐passage times of the process over certain nonfailure thresholds. Based on only these intermediate data, we obtain the uniformly minimum variance unbiased estimator and uniformly most accurate confidence interval for the mean lifetime. For estimating the lifetime distribution function, we propose a modified maximum likelihood estimator and a new estimator and prove that, by increasing the sample size of the intermediate data, these estimators and the above‐mentioned estimator of the mean lifetime can achieve the same levels of accuracy as the estimators assuming one has failure times. Thus, our method of using only intermediate data is useful for highly reliable products when their failure times are difficult to obtain. Furthermore, we show that the proposed new estimator of the lifetime distribution function is more accurate than the standard and modified maximum likelihood estimators. We also obtain approximate confidence intervals for the lifetime distribution function and its percentiles. Finally, we use light‐emitting diodes as an example to illustrate our method and demonstrate how to validate the Wiener assumption during the testing. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
52.
This paper includes two simple analytic formulas for kill probability that are applicable in circumstances where shots should be fired in a pattern. The two formulas bracket the maximum kill probability achievable with an optimal pattern. The upper bound corresponds to an optimal nonfeasible pattern, and the lower bound to a nonoptimal feasible pattern.  相似文献   
53.
We address a single product, continuous review model with stationary Poisson demand. Such a model has been effectively studied when mean demand is known. However, we are concerned with managing new items for which only a Bayesian prior distribution on the mean is available. As demand occurs, the prior is updated and our control parameters are revised. These include the reorder point (R) and reorder quantity (Q). Deemer, taking a clue from some earlier RAND work, suggested using a model appropriate for known mean, but using a Compound Poisson distribution for demand rather than Poisson to reflect uncertainty about the mean. Brown and Rogers also used this approach but within a periodic review context. In this paper we show how to compute optimum reorder points for a special problem closely related to the problem of real interest. In terms of the real problem, subject to a qualification to be discussed, the reorder points found are upper bounds for the optimum. At the same time, the reorder points found can never exceed those found by the Compound Poisson (Deemer) approach. And they can be smaller than those found when there is no uncertainty about the mean. As a check, the Compound Poisson and proposed approach are compared by simulation.  相似文献   
54.
In the finite-horizon stochastic (s, S) inventory model with periodic review the parameters of the optimal policy generally vary with the length of the horizon. A stationary policy, however, is easier to implement and may be easier to calculate. This paper studies optimal stationary policies for a finite horizon and relates them to optimal policies through their relation to optimal stationary policies for an infinite horizon.  相似文献   
55.
A discrete time Collection Model is formulated, involving the completion of a touring objective on a network with stochastic node states. Heuristic touring strategies are constructed, there being as yet inadequate analytic results for its optimal solution. Effectiveness of the heuristics is assessed by comparing expected tour times under the heuristics with expected tour times given perfect information. A branch and bound algorithm is presented for computing the perfect information tour times.  相似文献   
56.
We consider a two‐echelon inventory system with a manufacturer operating from a warehouse supplying multiple distribution centers (DCs) that satisfy the demand originating from multiple sources. The manufacturer has a finite production capacity and production times are stochastic. Demand from each source follows an independent Poisson process. We assume that the transportation times between the warehouse and DCs may be positive which may require keeping inventory at both the warehouse and DCs. Inventory in both echelons is managed using the base‐stock policy. Each demand source can procure the product from one or more DCs, each incurring a different fulfilment cost. The objective is to determine the optimal base‐stock levels at the warehouse and DCs as well as the assignment of the demand sources to the DCs so that the sum of inventory holding, backlog, and transportation costs is minimized. We obtain a simple equation for finding the optimal base‐stock level at each DC and an upper bound for the optimal base‐stock level at the warehouse. We demonstrate several managerial insights including that the demand from each source is optimally fulfilled entirely from a single distribution center, and as the system's utilization approaches 1, the optimal base‐stock level increases in the transportation time at a rate equal to the demand rate arriving at the DC. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
57.
In this article, we consider the performance evaluation of a multicomponent, multiproduct assemble‐to‐order (ATO) system. Each component is managed independently using a base‐stock policy at a supply facility with limited production capacity and an infinite buffer. The arrivals of demands follow a multivariate Poisson process and unfilled demands are backlogged. Because exact analysis of the proposed system is not feasible, we propose two approximation methods which provide upper and lower bounds for various performance measures such as fill rate, average waiting time, and average number of backorders of the proposed system. Our computational experiments demonstrate the effectiveness of the two approximation methods under various system settings. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
58.
We propose three related estimators for the variance parameter arising from a steady‐state simulation process. All are based on combinations of standardized‐time‐series area and Cramér–von Mises (CvM) estimators. The first is a straightforward linear combination of the area and CvM estimators; the second resembles a Durbin–Watson statistic; and the third is related to a jackknifed version of the first. The main derivations yield analytical expressions for the bias and variance of the new estimators. These results show that the new estimators often perform better than the pure area, pure CvM, and benchmark nonoverlapping and overlapping batch means estimators, especially in terms of variance and mean squared error. We also give exact and Monte Carlo examples illustrating our findings.© 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
59.
An algorithm is developed to modify the Wilson Q to account for a short-term expenditure constraint over a catalog of items. Representative results are shown and generalizations made.  相似文献   
60.
While accepting consumer returns has long been proposed as a solution to resolve the consumer valuation uncertainty problem, there are still a sizable portion of retailers who insist on a “no return” policy. In this article, we offer an economic rationale for these seemingly unreasonable strategies in a supply chain context. We demonstrate when and why the retailer may benefit from refusing consumer returns, even though offering consumer returns allows the supply chain to implement the expostmarket segmentation. Granting the retailer the right to refuse consumer returns may sometimes improve supply chain efficiency: it eliminates the manufacturer's attempt to induce inefficient consumer returns and bring the equilibrium back to that in the vertically integrated benchmark. We also find that the refund and the retail price can move in the opposite directions when product reliability varies, and consumer returns have a nontrivial impact on the quality choice. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 686–701, 2015  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号