首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   39篇
  2021年   1篇
  2019年   5篇
  2018年   2篇
  2017年   5篇
  2016年   10篇
  2015年   14篇
  2014年   8篇
  2013年   58篇
  2012年   9篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   11篇
  2006年   7篇
  2005年   11篇
  2004年   7篇
  2003年   11篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1993年   1篇
排序方式: 共有214条查询结果,搜索用时 46 毫秒
211.
The warehouse problem with deterministic production cost, selling prices, and demand was introduced in the 1950s and there is a renewed interest recently due to its applications in energy storage and arbitrage. In this paper, we consider two extensions of the warehouse problem and develop efficient computational algorithms for finding their optimal solutions. First, we consider a model where the firm can invest in capacity expansion projects for the warehouse while simultaneously making production and sales decisions in each period. We show that this problem can be solved with a computational complexity that is linear in the product of the length of the planning horizon and the number of capacity expansion projects. We then consider a problem in which the firm can invest to improve production cost efficiency while simultaneously making production and sales decisions in each period. The resulting optimization problem is non‐convex with integer decision variables. We show that, under some mild conditions on the cost data, the problem can be solved in linear computational time. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 367–373, 2016  相似文献   
212.
This article considers the empty vehicle redistribution problem in a hub‐and‐spoke transportation system, with random demands and stochastic transportation times. An event‐driven model is formulated, which yields the implicit optimal control policy. Based on the analytical results for two‐depot systems, a dynamic decomposition procedure is presented which produces a near‐optimal policy with linear computational complexity in terms of the number of spokes. The resulting policy has the same asymptotic behavior as that of the optimal policy. It is found that the threshold‐type control policy is not usually optimal in such systems. The results are illustrated through small‐scale numerical examples. Through simulation the robustness of the dynamic decomposition policy is tested using a variety of scenarios: more spokes, more vehicles, different combinations of distribution types for the empty vehicle travel times and loaded vehicle arrivals. This shows that the dynamic decomposition policy is significantly better than a heuristics policy in all scenarios and appears to be robust to the assumptions of the distribution types. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
213.
We propose a dynamic escape route system for emergency evacuation of a naval ship. The system employs signals that adapt to the causative contingency and the crew's physical distribution about the ship. A mixed‐integer nonlinear programming model, with underlying network structure, optimizes the evacuation process. The network's nodes represent compartments, closures (e.g., doors and hatches) and intersections, while arcs represent various types of passageways. The objective function integrates two potentially conflicting factors: average evacuation time and the watertight and airtight integrity of the ship after evacuation. A heuristic solves the model approximately using a sequence of mixed‐integer linear approximating problems. Using data for a Spanish frigate, with standard static routes specified by the ship's designers, computational tests show that the dynamic system can reduce average evacuation times, nearly 23%, and can improve a combined measure of ship integrity by up to 50%. In addition, plausible design changes to the frigate yield further, substantial improvements. Published 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   
214.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号