首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3320篇
  免费   82篇
  国内免费   1篇
  2021年   37篇
  2019年   89篇
  2018年   51篇
  2017年   80篇
  2016年   79篇
  2015年   62篇
  2014年   64篇
  2013年   694篇
  2010年   36篇
  2009年   37篇
  2008年   47篇
  2007年   52篇
  2006年   36篇
  2005年   42篇
  2004年   56篇
  2003年   42篇
  2002年   57篇
  1999年   41篇
  1998年   46篇
  1997年   49篇
  1996年   61篇
  1995年   41篇
  1994年   59篇
  1993年   63篇
  1992年   58篇
  1991年   74篇
  1990年   39篇
  1989年   72篇
  1988年   78篇
  1987年   68篇
  1986年   70篇
  1985年   65篇
  1984年   36篇
  1983年   42篇
  1982年   43篇
  1981年   46篇
  1980年   51篇
  1979年   45篇
  1978年   49篇
  1977年   45篇
  1976年   45篇
  1975年   46篇
  1974年   52篇
  1973年   50篇
  1972年   52篇
  1971年   43篇
  1970年   40篇
  1969年   40篇
  1968年   34篇
  1967年   33篇
排序方式: 共有3403条查询结果,搜索用时 15 毫秒
941.
This paper introduces a general or “distribution‐free” model to analyze the lifetime of components under accelerated life testing. Unlike the accelerated failure time (AFT) models, the proposed model shares the advantage of being “distribution‐free” with the proportional hazard (PH) model and overcomes the deficiency of the PH model not allowing survival curves corresponding to different values of a covariate to cross. In this research, we extend and modify the extended hazard regression (EHR) model using the partial likelihood function to analyze failure data with time‐dependent covariates. The new model can be easily adopted to create an accelerated life testing model with different types of stress loading. For example, stress loading in accelerated life testing can be a step function, cyclic, or linear function with time. These types of stress loadings reduce the testing time and increase the number of failures of components under test. The proposed EHR model with time‐dependent covariates which incorporates multiple stress loadings requires further verification. Therefore, we conduct an accelerated life test in the laboratory by subjecting components to time‐dependent stresses, and we compare the reliability estimation based on the developed model with that obtained from experimental results. The combination of the theoretical development of the accelerated life testing model verified by laboratory experiments offers a unique perspective to reliability model building and verification. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 303–321, 1999  相似文献   
942.
Scheduling a set of n jobs on a single machine so as to minimize the completion time variance is a well‐known NP‐hard problem. In this paper, we propose a sequence, which can be constructed in O(n log n) time, as a solution for the problem. Our primary concern is to establish the asymptotical optimality of the sequence within the framework of probabilistic analysis. Our main result is that, when the processing times are randomly and independently drawn from the same uniform distribution, the sequence is asymptotically optimal in the sense that its relative error converges to zero in probability as n increases. Other theoretical results are also derived, including: (i) When the processing times follow a symmetric structure, the problem has 2⌊(n−1)/2⌋ optimal sequences, which include our proposed sequence and other heuristic sequences suggested in the literature; and (ii) when these 2⌊(n−1)/2⌋ sequences are used as approximate solutions for a general problem, our proposed sequence yields the best approximation (in an average sense) while another sequence, which is commonly believed to be a good approximation in the literature, is interestingly the worst. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 373–398, 1999  相似文献   
943.
Consider a simulation experiment consisting of v independent vector replications across k systems, where in any given replication one system is selected as the best performer (i.e., it wins). Each system has an unknown constant probability of winning in any replication and the numbers of wins for the individual systems follow a multinomial distribution. The classical multinomial selection procedure of Bechhofer, Elmaghraby, and Morse (Procedure BEM) prescribes a minimum number of replications, denoted as v*, so that the probability of correctly selecting the true best system (PCS) meets or exceeds a prespecified probability. Assuming that larger is better, Procedure BEM selects as best the system having the largest value of the performance measure in more replications than any other system. We use these same v* replications across k systems to form (v*)k pseudoreplications that contain one observation from each system, and develop Procedure AVC (All Vector Comparisons) to achieve a higher PCS than with Procedure BEM. For specific small-sample cases and via a large-sample approximation we show that the PCS with Procedure AVC exceeds the PCS with Procedure BEM. We also show that with Procedure AVC we achieve a given PCS with a smaller v than the v* required with Procedure BEM. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 459–482, 1998  相似文献   
944.
This paper considers the maintenance of aircraft engine components where economies exist for joint replacement because (a) the aircraft must be pulled from service for maintenance and (b) repair of some components requires removal and disassembly of the engine. It is well known that the joint replacement problem is difficult to solve exactly, because the optimal solution does not have a simple structured form. Therefore, we formulate three easy-to-implement heuristics and test their performance against a lower bound for various numerical examples. One of our heuristics, the base interval approach, in which replacement cycles for all components are restricted to be multiples of a specified interval, is shown to be robustly accurate. Moreover, this heuristic is consistent with maintenance policies used by commercial airlines in which periodic maintenance checks are made at regular intervals. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 435–458, 1998  相似文献   
945.
We consider a general repair process where the virtual age Vi after the ith repair is given by Vi = ϕ(Vi−1 + Xi), ϕ(·) is a specified repair functional, and Xi is the time between the (i − 1)th and ith repair. Some monotonicity and dominance properties are derived, and an equilibrium process is considered. A computational method for evaluating the expected number/density of repairs is described together with an approximation method for obtaining some parameters of the equilibrium process. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 391–405, 1998  相似文献   
946.
A recent paper finds that when volume discounts are available, in some cases, reliance on the Economic Order Quantity (EOQ) model can induce purchasers to make wealth reducing decisions, and the Present Value (PV) approach should be preferred. While this finding is theoretically correct, the magnitudes of wealth reductions suggested by the paper's numerical examples seem to be questionable. Furthermore, the paper also finds that, in some other cases, a purchaser using the EOQ approach realizes a net increase in current wealth compared to a purchaser using the PV approach. Logic suggests that such a finding cannot be correct, since by its very definition, it is the PV approach that seeks to maximize the current wealth. We offer an alternative frame of comparison and a modified model to show that, under the paper's assumptions, the EOQ approach can never realize a net increase in current wealth compared to the current wealth generated by the PV approach. On the other hand, we also show that when typical values of the relevant parameters prevail, the additional costs imposed by the EOQ approach are not significant. Finally, we suggest that insofar as the PV approach requires greater administrative costs to implement, it may even be counterproductive to the goal of wealth maximization. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 377–389, 1998  相似文献   
947.
The problem of searching for randomly moving targets such as children and submarines is known to be fundamentally difficult, but finding efficient methods for generating optimal or near optimal solutions is nonetheless an important practical problem. This paper investigates the efficiency of Branch and Bound methods, with emphasis on the tradeoff between the accuracy of the bound employed and the time required to compute it. A variety of bounds are investigated, some of which are new. In most cases the best bounds turn out to be imprecise, but very easy to compute. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 243–257, 1998  相似文献   
948.
The maximum likelihood estimator (MLE) for a distribution function with increasing failure rate is derived, based on a collection of series system data. Applications can arise in industries where operating environments make available only such system-level data, due to system configuration or type-II censoring. The estimator can be solved using isotonic regression. For the special case in which systems contain one component, the estimator is equivalent to the restricted maximum likelihood estimator of Marshall and Proschan [9]. The MLE is illustrated using emergency diesel generator failure data from the nuclear industry. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 115–123, 1998  相似文献   
949.
This paper revisits the modeling by Bracken [3] of the Ardennes campaign of World War II using the Lanchester equations. It revises and extends that analysis in a number of ways: (1) It more accurately fits the model parameters using linear regression; (2) it considers the data from the entire campaign; and (3) it adds in air sortie data. In contrast to previous results, it concludes by showing that neither the Lanchester linear or Lanchester square laws fit the data. A new form of the Lanchester equations emerges with a physical interpretation. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 1–22, 1998  相似文献   
950.
This article is concerned with the analysis of a squared-Euclidean distance location-allocation problem with balanced transportation constraints, where the costs are directly proportional to distances and the amount shipped. The problem is shown to be equivalent to maximizing a convex quadratic function subject to transportation constraints. A branch-and-bound algorithm is developed that utilizes a specialized, tight, linear programming representation to compute strong upper bounds via a Lagrangian relaxation scheme. These bounds are shown to substantially dominate several other upper bounds that are derived using standard techniques as problem size increases. The special structure of the transportation constraints is used to derive a partitioning scheme, and this structure is further exploited to devise suitable logical tests that tighten the bounds implied by the branching restrictions on the transportation flows. The transportation structure is also used to generate additional cut-set inequalities based on a cycle prevention method which preserves a forest graph for any partial solution. Results of the computational experiments, and a discussion on possible extensions, are also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号