首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   561篇
  免费   15篇
  2021年   9篇
  2020年   6篇
  2019年   18篇
  2018年   12篇
  2017年   12篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   86篇
  2010年   7篇
  2009年   9篇
  2008年   10篇
  2005年   5篇
  2004年   8篇
  2003年   6篇
  2002年   10篇
  2001年   7篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   6篇
  1996年   12篇
  1995年   8篇
  1994年   6篇
  1993年   14篇
  1992年   10篇
  1991年   13篇
  1990年   6篇
  1989年   16篇
  1988年   18篇
  1987年   14篇
  1986年   17篇
  1985年   13篇
  1984年   13篇
  1982年   7篇
  1981年   7篇
  1980年   15篇
  1979年   9篇
  1978年   11篇
  1977年   10篇
  1976年   8篇
  1975年   6篇
  1974年   11篇
  1972年   6篇
  1971年   13篇
  1970年   8篇
  1969年   10篇
  1968年   6篇
  1967年   6篇
  1966年   7篇
排序方式: 共有576条查询结果,搜索用时 15 毫秒
201.
202.
The machine scheduling literature does not consider the issue of tool change. The parallel literature on tool management addresses this issue but assumes that the change is due only to part mix. In practice, however, a tool change is caused most frequently by tool wear. That is why we consider here the problem of scheduling a set of jobs on a single CNC machine where the cutting tool is subject to wear; our objective is to minimize the total completion time. We first describe the problem and discuss its peculiarities. After briefly reviewing available theoretical results, we then go on to provide a mixed 0–1 linear programming model for the exact solution of the problem; this is useful in solving problem instances with up to 20 jobs and has been used in our computational study. As our main contribution, we next propose a number of heuristic algorithms based on simple dispatch rules and generic search. We then discuss the results of a computational study where the performance of the various heuristics is tested; we note that the well‐known SPT rule remains good when the tool change time is small but deteriorates as this time increases and further that the proposed algorithms promise significant improvement over the SPT rule. © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
203.
We examine several methods for evaluating resource acquisition decisions under uncertainty. Traditional methods may underestimate equipment benefit when part of this benefit comes from decision flexibility. We develop a new, practical method for resource planning under uncertainty, and show that this approach is more accurate than several commonly used methods. We successfully applied our approach to an investment problem faced by a major firm in the aviation information industry. Our recommendations were accepted and resulted in estimated annual savings in excess of $1 million (US). © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
204.
A double-ended queue with a Poisson arrival pattern is examined in a situation where the rates depend (in a restricted sense) on both the time and the state of the system. Under some circumstances, the rates can be controlled. This article studies the distribution of the difference in queue sizes for each member of a large class of control strategies and introduces the problem of determining the optimal times at which the control should be in effect in order to maximize certain objective functions.  相似文献   
205.
This paper is concerned with a modification of a recently proposed variant of Karmarkar's algorithm for solving linear programming problems. In analyzing this variant, we exhibit interesting and useful relationships of these types of algorithms with barrier function methods, and subgradient optimization procedures involving space dilation techniques, which subsume the well-known ellipsoidal type of algorithms. Convergence of this variant is established under certain regularity conditions. We also provide remarks on how to obtain dual variables or Lagrange multipliers at optimality.  相似文献   
206.
A numerical approach is presented for determining the waiting time distribution in a transient bulk-arrival, bulk-service queue. Vehicle departures from the queue are governed by a general dispatch strategy that includes holding with a variable release function and vehicle cancellations. The waiting time distribution of a customer (in a group) arriving at a given point in time is calculated by simulating the process in discrete time and determining at each step the probability the customer has left the system. The dispatch strategies require knowing the total length of the queue as well as the position a customer holds in the queue. An exact approach is compared to an accurate approximation which is 50 to 100 times faster. Comparisons are made with other approaches in the context of steady-state systems.  相似文献   
207.
In this article we present and test two heuristics for the economic lot scheduling problem. The first heuristic was developed by one of us (P.C. Geng) during Ph.D. research, while the other is a convergent implementation of an algorithm due to Doll and Whybark. We study the performance of these heuristics on a large set of test problems constructed using a new form of problem generation that yields random problems within an experimental design.  相似文献   
208.
209.
Order picking accounts for most of the operating expense of a typical distribution center, and thus is often considered the most critical function of a supply chain. In discrete order picking a single worker walks to pick all the items necessary to fulfill a single customer order. Discrete order picking is common not only because of its simplicity and reliability, but also because of its ability to pick orders quickly upon receipt, and thus is commonly used by e‐commerce operations. There are two primary ways to reduce the cost (walking distance required) of the order picking system. First is through the use of technology—conveyor systems and/or the ability to transmit order information to pickers via mobile units. Second is through the design—where best to locate depots (where workers receive pick lists and deposit completed orders) and how best to lay out the product. We build a stochastic model to compare three configurations of different technology requirements: single‐depot, dual‐depot, and no‐depot. For each configuration we explore the optimal design. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
210.
We consider a system that depends on a single vital component. If this component fails, the system life will terminate. If the component is replaced before its failure then the system life may be extended; however, there are only a finite number of spare components. In addition, the lifetimes of these spare components are not necessarily identically distributed. We propose a model for scheduling component replacements so as to maximize the expected system survival. We find the counterintuitive result that when comparing components' general lifetime distributions based on stochastic orderings, not even the strongest ordering provides an a priori guarantee of the optimal sequencing of components. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号