首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   10篇
  2020年   3篇
  2019年   13篇
  2018年   9篇
  2017年   4篇
  2016年   8篇
  2015年   7篇
  2014年   7篇
  2013年   75篇
  2011年   8篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   7篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1972年   4篇
  1971年   2篇
  1970年   3篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有250条查询结果,搜索用时 62 毫秒
181.
A bomber carrying homogenous weapons sequentially engages ground targets capable of retaliation. Upon reaching a target, the bomber may fire a weapon at it. If the target survives the direct fire, it can either return fire or choose to hold fire (play dead). If the former occurs, the bomber is immediately made aware that the target is alive. If no return fire is seen, the true status of the target is unknown to the bomber. After the current engagement, the bomber, if still alive, can either re-engage the same target or move on to the next target in the sequence. The bomber seeks to maximize the expected cumulative damage it can inflict on the targets. We solve the perfect and partial information problems, where a target always fires back and sometimes fires back respectively using stochastic dynamic programming. The perfect information scenario yields an appealing threshold based bombing policy. Indeed, the marginal future reward is the threshold at which the control policy switches and furthermore, the threshold is monotonic decreasing with the number of weapons left with the bomber and monotonic nondecreasing with the number of targets left in the mission. For the partial information scenario, we show via a counterexample that the marginal future reward is not the threshold at which the control switches. In light of the negative result, we provide an appealing threshold based heuristic instead. Finally, we address the partial information game, where the target can choose to fire back and establish the Nash equilibrium strategies for a representative two target scenario.  相似文献   
182.
183.
We study competitive due‐date and capacity management between the marketing and engineering divisions within an engineer‐to‐order (ETO) firm. Marketing interacts directly with the customers and quotes due‐dates for their orders. Engineering is primarily concerned with the efficient utilization of resources and is willing to increase capacity if the cost is compensated. The two divisions share the responsibility for timely delivery of the jobs. We model the interaction between marketing and engineering as a Nash game and investigate the effect of internal competition on the equilibrium decisions. We observe that the internal competition not only degrades the firm's overall profitability but also the serviceability. Finally, we extend our analysis to multiple‐job settings that consider both flexible and inflexible capacity. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
184.
Typically weapon systems have an inherent systematic error and a random error for each round, centered around its mean point of impact. The systematic error is common to all aimings. Assume such a system for which there is a preassigned amount of ammunition of n rounds to engage a given target simultaneously, and which is capable of administering their fire with individual aiming points (allowing “offsets”). The objective is to determine the best aiming points for the system so as to maximize the probability of hitting the target by at least one of the n rounds. In this paper we focus on the special case where the target is linear (one‐dimensional) and there are no random errors. We prove that as long as the aiming error is symmetrically distributed and possesses one mode at zero, the optimal aiming is independent of the particular error distribution, and we specify the optimal aiming points. Possible extensions are further discussed, as well as civilian applications in manufacturing, radio‐electronics, and detection. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 323–333, 1999  相似文献   
185.
We apply the techniques of response surface methodology (RSM) to approximate the objective function of a two‐stage stochastic linear program with recourse. In particular, the objective function is estimated, in the region of optimality, by a quadratic function of the first‐stage decision variables. The resulting response surface can provide valuable modeling insight, such as directions of minimum and maximum sensitivity to changes in the first‐stage variables. Latin hypercube (LH) sampling is applied to reduce the variance of the recourse function point estimates that are used to construct the response surface. Empirical results show the value of the LH method by comparing it with strategies based on independent random numbers, common random numbers, and the Schruben‐Margolin assignment rule. In addition, variance reduction with LH sampling can be guaranteed for an important class of two‐stage problems which includes the classical capacity expansion model. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 753–776, 1999  相似文献   
186.
187.
In 1841 Henry Wilkinson in his book Engines of War and William Greener in The Science of Gunnery describe a range of methods then in use for shaping the outside of gun barrels after the barrel forging process, ranging from manual off-hand grinding to the use of precision machines. In the same year G. & J. Rennie published the design of their state-of-the-art lathe that was capable of turning complex and dished barrel forms. This built upon the earlier work of both Henry Nock and John Jones. In the early years of the 19th century both Britain, at Enfield and other locations, and the USA, at Harpers Ferry and Springfield, began to introduce barrel-turning technology. This paper uses measurements taken from a significant number of military barrels made by several makers, and also newly exposed information about Henry Nock and the Enfield Factory of 1815, to understand better the technologies that were applied to military flintlock barrel finishing from the 1780s to the 1840s, and particularly during the major wars of 1793–1815, when high output was paramount. Measurements both of barrel form and out-of-roundness are presented. These allow the interpretation of the techniques being used by different makers at different locations, and raise questions about the purpose and achievement of the complex dished barrel forms found on British military flintlock muskets. This approach also allows us to better describe the earliest factory on the Enfield site, one of the most significant sites in the wider history of UK manufacturing.  相似文献   
188.
189.
In order‐quantity reorder‐point formulations for inventory items where backordering is allowed, some of the more common ways to prevent excessive stockouts in an optimal solution are to impose either a cost per unit short, a cost per stockout occasion, or a target fill rate. We show that these popular formulations, both exact and approximate, can become “degenerate” even with quite plausible parameters. By degeneracy we mean any situation in which the formulation either cannot be solved, leads to nonsensical “optimal” solutions, or becomes equivalent to something substantially simpler. We explain the reasons for the degeneracies, yielding new insight into these models, and we provide practical advice for inventory managers. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 686–705, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10037  相似文献   
190.
Despite multiple base closing rounds, the United States Department of Defense still has excess base capacity, and thus President Trump and high-level Defense Department officials are calling for more base closure through the Base Realignment and Closure (BRAC) process. However, another BRAC may not be the optimal solution, because simple base closure is not an efficient way to reduce surplus base capacity. Thus, Defense Department officials should consider other methods to reduce surplus capacity, including reduction in base size, leasing excess base property, or transferring it to another government agency for a variety of alternative uses. The surplus capacity issue also offers an opportunity to DOD to reassess base utilization, to update base requirements with current and future force structure. While BRAC focuses on American military bases, the process and alternatives also have international applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号