首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   16篇
  2021年   5篇
  2020年   5篇
  2019年   17篇
  2018年   14篇
  2017年   9篇
  2016年   12篇
  2015年   7篇
  2014年   11篇
  2013年   105篇
  2011年   10篇
  2010年   5篇
  2009年   7篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   10篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   9篇
  1993年   10篇
  1992年   7篇
  1991年   7篇
  1990年   4篇
  1989年   7篇
  1988年   14篇
  1987年   7篇
  1986年   7篇
  1985年   11篇
  1984年   9篇
  1983年   5篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   6篇
  1976年   3篇
  1974年   7篇
  1973年   4篇
  1972年   5篇
  1971年   8篇
  1970年   6篇
  1969年   5篇
  1968年   3篇
  1967年   3篇
排序方式: 共有463条查询结果,搜索用时 22 毫秒
91.
92.
93.
In this journal in 1967. Szware presented an algorithm for the optimal routing of a common vehicle fleet between m sources and n sinks with p different types of commodities. The main premise of the formulation is that a truck may carry only one commodity at a time and must deliver the entire load to one demand area. This eliminates the problem of routing vehicles between sources or between sinks and limits the problem to the routing of loaded trucks between sources and sinks and empty trucks making the return trip. Szwarc considered only the transportation aspect of the problem (i. e., no intermediate points) and presented a very efficient algorithm for solution of the case he described. If the total supply is greater than the total demand, Szwarc shows that the problem is equivalent to a (mp + n) by (np + m) Hitchcock transportation problem. Digital computer codes for this algorithm require rapid access storage for a matrix of size (mp + n) by (np + m); therefore, computer storage required grows proportionally to p2. This paper offers an extension of his work to a more general form: a transshipment network with capacity constraints on all arcs and facilities. The problem is shown to be solvable directly by Fulkerson's out-of-kilter algorithm. Digital computer codes for this formulation require rapid access storage proportional to p instead of p2. Computational results indicate that, in addition to handling the extensions, the out-of-kilter algorithm is more efficient in the solution of the original problem when there is a mad, rate number of commodities and a computer of limited storage capacity.  相似文献   
94.
This paper analyzes the problem faced by a field commander who, confronted by an enemy on N battlefields, must determine an interdiction policy for the enemy's logistics system which minimizes the amount of war material flowing through this system per unit time. The resource utilized to achieve this interdiction is subject to constraint. It can be shown that this problem is equivalent to determining the set of arcs Z* to remove subject to constraint from a directed graph G such that the resulting maximal flow is minimized. A branch and bound algorithm for the solution to this problem is described, and a numerical example is provided.  相似文献   
95.
Generalized Lagrange Multipliers (GLM) are used to develop an algorithm for a type of multiproduct single period production planning problem which involves discontinuities of the fixed charge variety. Several properties of the GLM technique are developed for this class of problems and from these properties an algorithm is obtained. The problem of resolving the gaps which are exposed by the GLM procedure is considered, and an example involving a quadratic cost function is explored in detail.  相似文献   
96.
Let us assume that observations are obtained at random and sequentially from a population with density function In this paper we consider a sequential rule for estimating μ when σ is unknown corresponding to the following class of cost functions In this paper we consider a sequential rule for estimating μ when σ is unknown corresponding to the following class of cost functions Where δ(XI,…,XN) is a suitable estimator of μ based on the random sample (X1,…, XN), N is a stopping variable, and A and p are given constants. To study the performance of the rule it is compared with corresponding “optimum fixed sample procedures” with known σ by comparing expected sample sizes and expected costs. It is shown that the rule is “asymptotically efficient” when absolute loss (p=-1) is used whereas the one based on squared error (p = 2) is not. A table is provided to show that in small samples similar conclusions are also true.  相似文献   
97.
In this paper applications of results obtained by these authors for a generalized version of a problem proposed by Smirnov, are considered. The areas of application explored are system interface, queueing, transportation flow, and sequential analysis. The included table should be invaluable to the reader in applying these results. Finally the relationship between the limiting and exact expressions relating to this table is also explored.  相似文献   
98.
This paper discusses a mixed integer programming method for solving the Facilities Location Problem with capacities on the facilities. The algorithm uses a Decomposition technique to solve the dual of the associated continuous problem in each branch-bound iteration. The method was designed to produce the global optimum solution for problems with up to 100 facilities and 1,000 customers. Computational experience and a complete example are also presented in the appendix.  相似文献   
99.
The exact expression is derived for the average stationary cost of a (Q,R) inventory system with lost sales, unit Poisson demands, Erlang-distributed lead times, fixed order cost, fixed cost per unit lost sale, linear holding cost per unit time, and a maximum of one order outstanding. Explicit expressions for the state probabilities and a fast method of calculating them are obtained for the case of Q greater than R. Exponential lead times are analyzed as a special case. A simple cyclic coordinate search procedure is used to locate the minimum cost policy. Examples of the effect of lead time variability on costs are given.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号