首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   10篇
  2020年   4篇
  2019年   13篇
  2018年   9篇
  2017年   4篇
  2016年   8篇
  2015年   7篇
  2014年   9篇
  2013年   90篇
  2011年   8篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   7篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
  1972年   4篇
  1971年   2篇
  1970年   4篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
241.

Despite considerable post‐war planning, the British counter‐insurgency campaign in Kenya did not constitute a Colonial Office strategy for decolonisation. COIN in Kenya had one purpose: to re‐impose law and order, or British control. If for no other reason, this is demonstrated by the initial reluctance of the Colonial Office to intervene. Frequent re‐assessments and postponement of the ending of the State of Emergency, and the subordination of socio‐economic and political reforms to military objectives, show clearly that decolonisation was not high on the British list of priorities in Kenya. This article questions the relationship between COIN and decolonisation, and the validity of models of British counter‐insurgency.  相似文献   
242.
243.
We consider a manufacturer (i.e., a capacitated supplier) that produces to stock and has two classes of customers. The primary customer places orders at regular intervals of time for a random quantity, while the secondary customers request a single item at random times. At a predetermined time the manufacturer receives advance demand information regarding the order size of the primary customer. If the manufacturer is not able to fill the primary customer's demand, there is a penalty. On the other hand, serving the secondary customers results in additional profit; however, the manufacturer can refuse to serve the secondary customers in order to reserve inventory for the primary customer. We characterize the manufacturer's optimal production and stock reservation policies that maximize the manufacturer's discounted profit and the average profit per unit time. We show that these policies are threshold‐type policies, and these thresholds are monotone with respect to the primary customer's order size. Using a numerical study we provide insights into how the value of information is affected by the relative demand size of the primary and secondary customers. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
244.
We formulate exact expressions for the expected values of selected estimators of the variance parameter (that is, the sum of covariances at all lags) of a steady‐state simulation output process. Given in terms of the autocovariance function of the process, these expressions are derived for variance estimators based on the simulation analysis methods of nonoverlapping batch means, overlapping batch means, and standardized time series. Comparing estimator performance in a first‐order autoregressive process and the M/M/1 queue‐waiting‐time process, we find that certain standardized time series estimators outperform their competitors as the sample size becomes large. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
245.
For most firms, especially the small‐ and medium‐sized ones, the operational decisions are affected by their internal capital and ability to obtain external capital. However, the majority of the literature on dynamic inventory control ignores the firm's financial status and financing issues. An important question that arises is: what are the optimal inventory and financing policies for firms with limited internal capital and limited access to external capital? In this article, we study a dynamic inventory control problem where a capital‐constrained firm periodically purchases a product from a supplier and sells it to a market with random demands. In each period, the firm can use its own capital and/or borrow a short‐term loan to purchase the product, with the interest rate being nondecreasing in the loan size. The objective is to maximize the firm's expected terminal wealth at the end of the planning horizon. We show that the optimal inventory policy in each period is an equity‐level‐dependent base‐stock policy, where the equity level is the sum of the firm's capital level and the value of its on‐hand inventory evaluated at the purchasing cost; and the structure of the optimal policy can be characterized by four intervals of the equity level. Our results shed light on the dynamic inventory control for firms with limited capital and short‐term financing capabilities.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 184–201, 2014  相似文献   
246.
247.
248.
The reoptimization procedure within the shifting bottleneck (SB) involves reevaluation of all previously scheduled toolgroup subproblems at each iteration of the SB heuristic. A real options analysis (ROA) model is developed to value the option to reoptimize in the SB heuristic, such that reoptimization only occurs when it is most likely to lead to a schedule with a lower objective function. To date, all ROA models have sought to value options financially (i.e., in terms of monetary value). The ROA model developed in this paper is completely original in that it has absolutely no monetary basis. The ROA methodologies presented are shown to greatly outperform both full and no reoptimization approaches with respect to both computation time and total weighted tardiness. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
249.
250.
An optimization model which is frequently used to assist decision makers in the areas of resource scheduling, planning, and distribution is the minimum cost multiperiod network flow problem. This model describes network structure decision-making problems over time. Such problems arise in the areas of production/distribution systems, economic planning, communication systems, material handling systems, traffic systems, railway systems, building evacuation systems, energy systems, as well as in many others. Although existing network solution techniques are efficient, there are still limitations to the size of problems that can be solved. To date, only a few researchers have taken the multiperiod structure into consideration in devising efficient solution methods. Standard network codes are usually used because of their availability and perceived efficiency. In this paper we discuss the development, implementation, and computational testing of a new technique, the forward network simplex method, for solving linear, minimum cost, multiperiod network flow problems. The forward network simplex method is a forward algorithm which exploits the natural decomposition of multiperiod network problems by limiting its pivoting activity. A forward algorithm is an approach to solving dynamic problems by solving successively longer finite subproblems, terminating when a stopping rule can be invoked or a decision horizon found. Such procedures are available for a large number of special structure models. Here we describe the specialization of the forward simplex method of Aronson, Morton, and Thompson to solving multiperiod network network flow problems. Computational results indicate that both the solution time and pivot count are linear in the number of periods. For standard network optimization codes, which do not exploit the multiperiod structure, the pivot count is linear in the number of periods; however, the solution time is quadratic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号