首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   13篇
  2021年   4篇
  2020年   4篇
  2019年   10篇
  2018年   4篇
  2017年   5篇
  2016年   9篇
  2015年   12篇
  2014年   3篇
  2013年   49篇
  2012年   2篇
  2011年   5篇
  2009年   2篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   6篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1981年   3篇
  1979年   3篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   4篇
  1969年   2篇
  1968年   3篇
  1967年   1篇
  1966年   2篇
  1948年   1篇
排序方式: 共有241条查询结果,搜索用时 46 毫秒
141.
ABSTRACT

Extended deterrence has been a main pillar of the security alliance between the United States and South Korea (Republic of Korea [ROK]) since the end of the Korean War. The changing dynamics of US extended deterrence in Korea, however, affected Seoul’s strategic choices within its bilateral alliance relationship with Washington. Examining the evolution of US extended deterrence in the Korean Peninsula until the Nixon administration, this article explains why South Korea began its nuclear weapons programme in a historical context of the US–ROK alliance relationship. This article argues that President Park Chung-hee’s increasing uncertainty about the US security commitment to South Korea in the 1960s led to his decision to develop nuclear weapons in the early 1970s despite the fact that US tactical nuclear weapons were still stationed in South Korea.  相似文献   
142.
We consider the problem of assigning a set of jobs to different parallel machines of the same processing speed, where each job is compatible to only a subset of those machines. The machines can be linearly ordered such that a higher‐indexed machine can process all those jobs that a lower‐indexed machine can process. The objective is to minimize the makespan of the schedule. This problem is motivated by industrial applications such as cargo handling by cranes with nonidentical weight capacities, computer processor scheduling with memory constraints, and grades of service provision by parallel servers. We develop an efficient algorithm for this problem with a worst‐case performance ratio of + ε, where ε is a positive constant which may be set arbitrarily close to zero. We also present a polynomial time approximation scheme for this problem, which answers an open question in the literature. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
143.
144.
145.
In this paper we study the scheduling problem that considers both production and job delivery at the same time with machine availability considerations. Only one vehicle is available to deliver jobs in a fixed transportation time to a distribution center. The vehicle can load at most K jobs as a delivery batch in one shipment due to the vehicle capacity constraint. The objective is to minimize the arrival time of the last delivery batch to the distribution center. Since machines may not always be available over the production period in real life due to preventive maintenance, we incorporate machine availability into the models. Three scenarios of the problem are studied. For the problem in which the jobs are processed on a single machine and the jobs interrupted by the unavailable machine interval are resumable, we provide a polynomial algorithm to solve the problem optimally. For the problem in which the jobs are processed on a single machine and the interrupted jobs are nonresumable, we first show that the problem is NP‐hard. We then propose a heuristic with a worst‐case error bound of 1/2 and show that the bound is tight. For the problem in which the jobs are processed on either one of two parallel machines, where only one machine has an unavailable interval and the interrupted jobs are resumable, we propose a heuristic with a worst‐case error bound of 2/3. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
146.
147.
Motivated by wind energy applications, we consider the problem of optimally replacing a stochastically degrading component that resides and operates in a partially observable environment. The component's rate of degradation is modulated by the stochastic environment process, and the component fails when it is accumulated degradation first reaches a fixed threshold. Assuming periodic inspection of the component, the objective is to minimize the long‐run average cost per unit time of performing preventive and reactive replacements for two distinct cases. The first case examines instantaneous replacements and fixed costs, while the second considers time‐consuming replacements and revenue losses accrued during periods of unavailability. Formulated and solved are mixed state space, partially observable Markov decision process models, both of which reveal the optimality of environment‐dependent threshold policies with respect to the component's cumulative degradation level. Additionally, it is shown that for each degradation value, a threshold policy with respect to the environment belief state is optimal if the environment alternates between two states. The threshold policies are illustrated by way of numerical examples using both synthetic and real wind turbine data. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 395–415, 2015  相似文献   
148.
Motivated by the presence of loss‐averse decision making behavior in practice, this article considers a supply chain consisting of a firm and strategic consumers who possess an S‐shaped loss‐averse utility function. In the model, consumers decide the purchase timing and the firm chooses the inventory level. We find that the loss‐averse consumers' strategic purchasing behavior is determined by their perceived gain and loss from strategic purchase delay, and the given rationing risk. Thus, the firm that is cognizant of this property tailors its inventory stocking policy based on the consumers' loss‐averse behavior such as their perceived values of gain and loss, and their sensitivity to them. We also demonstrate that the firm's equilibrium inventory stocking policy reflects both the economic logic of the traditional newsvendor inventory model, and the loss‐averse behavior of consumers. The equilibrium order quantity is significantly different from those derived from models that assume that the consumers are risk neutral and homogeneous in their valuations. We show that the firm that ignores strategic consumer's loss‐aversion behavior tends to keep an unnecessarily high inventory level that leads to excessive leftovers. Our numerical experiments further reveal that in some extreme cases the firm that ignores strategic consumer's loss‐aversion behavior generates almost 92% more leftovers than the firm that possesses consumers’ loss‐aversion information and takes it into account when making managerial decisions. To mitigate the consumer's forward‐looking behavior, we propose the adoption of the practice of agile supply chain management, which possesses the following attributes: (i) procuring inventory after observing real‐time demand information, (ii) enhanced design (which maintains the current production mix but improves the product performance to a higher level), and (iii) customized design (which maintains the current performance level but increases the variety of the current production line to meet consumers’ specific demands). We show that such a practice can induce the consumer to make early purchases by increasing their rationing risk, increasing the product value, or diversifying the product line. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 435–453, 2015  相似文献   
149.
In this article, we focus on relatively new maintenance and operational scheduling challenges that are faced by the United States Air Force concerning low‐observable (LO) or stealth aircraft. The LO capabilities of an aircraft degrade stochastically as it flies, making it difficult to make maintenance scheduling decisions. Maintainers can address these damages, but must decide, which aircraft should be put into maintenance, and for how long. Using data obtained from an active duty Air Force F‐22 wing and interviews with Air Force maintainers and program specialists, we model this problem as a generalization of the well‐known restless multiarmed bandit superprocess. Specifically, we use an extension of the traditional model to allow for actions that require varying lengths of time, and generate two separate index policies from a single model; one for maintenance actions and one for the flying action. These index policies allow maintenance schedulers to intuitively, quickly, and effectively rank a fleet of aircraft based on each aircraft's LO status and decide, which aircraft should enter into LO maintenance and for how long, and which aircraft should be used to satisfy daily sortie requirements. Finally, we present extensive data‐driven, detailed simulation results, where we compare the performance of the index policies against policies currently used by the Air Force, as well as some other possible more naive heuristics. The results indicate that the index policies significantly outperform existing policies in terms of fully mission capable (FMC) rates. In particular, the experiments highlight the importance of coordinated maintenance and flying decisions. © 2015 Wiley Periodicals, Inc. 62:60–80, 2015  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号