首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   15篇
  2021年   5篇
  2020年   4篇
  2019年   9篇
  2017年   6篇
  2016年   8篇
  2015年   8篇
  2013年   54篇
  2011年   5篇
  2009年   3篇
  2008年   3篇
  2007年   8篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   7篇
  2001年   3篇
  1999年   11篇
  1998年   4篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   8篇
  1991年   12篇
  1990年   5篇
  1989年   5篇
  1988年   8篇
  1987年   7篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1978年   7篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1973年   6篇
  1972年   2篇
  1971年   10篇
  1970年   2篇
  1969年   3篇
  1968年   4篇
  1967年   5篇
  1966年   7篇
排序方式: 共有323条查询结果,搜索用时 62 毫秒
161.
162.
We study a service design problem in diagnostic service centers, call centers that provide medical advice to patients over the phone about what the appropriate course of action is, based on the caller's symptoms. Due to the tension between increased diagnostic accuracy and the increase in waiting times more in‐depth service requires, managers face a difficult decision in determining the optimal service depth to guide the diagnostic process. The specific problem we consider models the situation when the capacity (staffing level) at the center is fixed, and when the callers have both congestion‐ and noncongestion‐related costs relating to their call. We develop a queueing model incorporating these features and find that the optimal service depth can take one of two different structures, depending on factors such as the nurses' skill level and the maximum potential demand. Sensitivity analyses of the two optimal structures show that they are quite different. In some situations, it may (or may not) be optimal for the manager to try to expand the demand at the center, and increasing skill level may (or may not) increase congestion. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
163.
The article develops a theorem which shows that the Lanchester linear war equations are not in general equal to the Kolmogorov linear war equations. The latter are time‐consuming to solve, and speed is important when a large number of simulations must be run to examine a large parameter space. Run times are provided, where time is a scarce factor in warfare. Four time efficient approximations are presented in the form of ordinary differential equations for the expected sizes and variances of each group, and the covariance, accounting for reinforcement and withdrawal of forces. The approximations are compared with “exact” Monte Carlo simulations and empirics from the WWII Ardennes campaign. The band spanned out by plus versus minus the incremented standard deviations captures some of the scatter in the empirics, but not all. With stochastically varying combat effectiveness coefficients, a substantial part of the scatter in the empirics is contained. The model is used to forecast possible futures. The implications of increasing the combat effectiveness coefficient governing the size of the Allied force, and injecting reinforcement to the German force during the Campaign, are evaluated, with variance assessments. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
164.
In a traditional multiple subset sum problem (MSSP), there is a given set of items and a given set of bins (or knapsacks) with identical capacities. The objective is to select a subset of the items and pack them into the bins such that the total weight of the selected items is maximized. However, in many applications of the MSSP, the bins have assignment restrictions. In this article, we study the subset sum problem with inclusive assignment set restrictions, in which the assignment set of one item (i.e., the set of bins that the item may be assigned to) must be either a subset or a superset of the assignment set of another item. We develop an efficient 0.6492‐approximation algorithm and test its effectiveness via computational experiments. We also develop a polynomial time approximation scheme for this problem. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
165.
166.
This article deals with the investigation of the effects of porosity distributions on nonlinear free vibration and transient analysis of porous functionally graded skew (PFGS) plates. The effective material properties of the PFGS plates are obtained from the modified power-law equations in which gradation varies through the thickness of the PFGS plate. A nonlinear finite element (FE) formulation for the overall PFGS plate is derived by adopting first-order shear deformation theory (FSDT) in conjunction with von Karman’s nonlinear strain displacement relations. The governing equations of the PFGS plate are derived using the principle of virtual work. The direct iterative method and Newmark’s integration technique are espoused to solve nonlinear mathematical relations. The influences of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the PFGS plate for different skew angles are studied in various parameters. The effects of volume fraction grading index and skew angle on the plate’s nonlinear dynamic responses for various porosity distributions are illustrated in detail.  相似文献   
167.
168.
A transit vessel traffic scheduling algorithm has been developed to limit the negative effects on cargo volume throughput in two‐way waterways where separation distances between transiting vessels must be maintained and passage restrictions may hold. It runs in time that is polynomial in the number of ships involved in the computation and finds schedules which increase the utilization of waterways. Three examples illustrate its use. The first example is situated in the Sunda Strait where the algorithm is used to enhance the safety of merchant shipping against a terrorist threat. It illustrates important features of the algorithm and demonstrates how it can be used with cross traffic. The second example is situated in the Strait of Istanbul and offers a comparison between the developed algorithm and the transit vessel scheduling algorithm of Ulusçu et al., J Navig 62 (2009), 59–77. This was done using a plausible model of the Strait of Istanbul. The third and last example shows how the algorithm can be used to schedule transit vessel traffic in two‐way waterways with junctions. This feature is especially useful in congested waters with a high risk of collisions like the Inland Sea of Japan. An extreme test case proves that the developed algorithm is a practical algorithm ready for such use. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 225–248, 2017  相似文献   
169.
We study two‐agent scheduling on a single sequential and compatible batching machine in which jobs in each batch are processed sequentially and compatibility means that jobs of distinct agents can be processed in a common batch. A fixed setup time is required before each batch is started. Each agent seeks to optimize some scheduling criterion that depends on the completion times of its own jobs only. We consider several scheduling problems arising from different combinations of some regular scheduling criteria, including the maximum cost (embracing lateness and makespan as its special cases), the total completion time, and the (weighted) number of tardy jobs. Our goal is to find an optimal schedule that minimizes the objective value of one agent, subject to an upper bound on the objective value of the other agent. For each problem under consideration, we provide either a polynomial‐time or a pseudo‐polynomial‐time algorithm to solve it. We also devise a fully polynomial‐time approximation scheme when both agents’ scheduling criteria are the weighted number of tardy jobs.  相似文献   
170.
In this paper we consider a practical scheduling problem commonly arising from batch production in a flexible manufacturing environment. Different part‐types are to be produced in a flexible manufacturing cell organized into a two‐stage production line. The jobs are processed in batches on the first machine, and the completion time of a job is defined as the completion time of the batch containing it. When processing of all jobs in a batch is completed on the first machine, the whole batch of jobs is transferred intact to the second machine. A constant setup time is incurred whenever a batch is formed on any machine. The tradeoff between the setup times and batch processing times gives rise to the batch composition decision. The problem is to find the optimal batch composition and the optimal schedule of the batches so that the makespan is minimized. The problem is shown to be strongly NP‐hard. We identify some special cases by introducing their corresponding solution methods. Heuristic algorithms are also proposed to derive approximate solutions. We conduct computational experiments to study the effectiveness of the proposed heuristics. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 128–144, 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号