首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   15篇
  2021年   4篇
  2020年   4篇
  2019年   6篇
  2017年   9篇
  2016年   7篇
  2015年   8篇
  2014年   6篇
  2013年   67篇
  2011年   4篇
  2009年   4篇
  2007年   7篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1998年   8篇
  1997年   9篇
  1996年   7篇
  1995年   11篇
  1994年   12篇
  1993年   10篇
  1992年   11篇
  1991年   11篇
  1990年   6篇
  1989年   5篇
  1988年   8篇
  1987年   8篇
  1986年   3篇
  1985年   8篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1979年   11篇
  1978年   6篇
  1977年   5篇
  1976年   6篇
  1975年   8篇
  1974年   7篇
  1973年   6篇
  1972年   9篇
  1971年   6篇
  1970年   3篇
  1969年   3篇
  1968年   5篇
  1967年   4篇
排序方式: 共有411条查询结果,搜索用时 31 毫秒
51.
This paper studies capacity expansions for a production facility that faces uncertain customer demand for a single product family. The capacity of the facility is modeled in three tiers, as follows. The first tier consists of a set of upper bounds on production that correspond to different resource types (e.g., machine types, categories of manpower, etc.). These upper bounds are augmented in increments of fixed size (e.g., by purchasing machines of standard types). There is a second‐tier resource that constrains the first‐tier bounds (e.g., clean room floor space). The third‐tier resource bounds the availability of the second‐tier resource (e.g., the total floor space enclosed by the building, land, etc.). The second and third‐tier resources are expanded at various times in various amounts. The cost of capacity expansion at each tier has both fixed and proportional elements. The lost sales cost is used as a measure for the level of customer service. The paper presents a polynomial time algorithm (FIFEX) to minimize the total cost by computing optimal expansion times and amounts for all three types of capacity jointly. It accommodates positive lead times for each type. Demand is assumed to be nondecreasing in a “weak” sense. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
52.
Most inventory formulations seek to minimize the sum of ordering costs, holding costs, and stockout costs: however, management often directs inventory policy by specifying a maximum investment level and/or a purchasing budget constraint. Within these limitations, they expect lower level managers to optimize some level of customer satisfaction, such as minimum stockouts or minimum shortages. The author has developed several cases of these “managerial” inventory formulations and has presented some computational results.  相似文献   
53.
Least squares estimators of the parameters of the generalized Eyring Model are obtained by using data from censored life tests conducted at several accelerated environments. These estimators are obtained after establishing that the Gauss-Markov conditions for least squares estimation are satisfied. Confidence intervals for the hazard rate at use conditions are obtained after empirically showing that the logarithm of the estimate of the hazard rate at use conditions is approximately normally distributed. The coverage probabilities of the confidence intervals are also verified by a Monte Carlo experiment. The techniques are illustrated by an application to some real data.  相似文献   
54.
Necessary and sufficient conditions for max-min problems are given here. In addition to characterization of directional derivatives of the relevant functions, subdifferentiability set for such functions is characterized.  相似文献   
55.
Models are formulated for determining continuous review (Q, r) policies for a multiitem inventory subject to constraints. The objective function is the minimization of total time-weighted shortages. The constraints apply to inventory investment and reorder workload. The formulations are thus independent of the normal ordering, holding, and shortage costs. Two models are presented, each representing a convex programming problem. Lagrangian techniques are employed with the first, simplified model in which only the reorder points are optimized. In the second model both the reorder points and the reorder quantities are optimized utilizing penalty function methods. An example problem is solved for each model. The final section deals with the implementation of these models in very large inventory systems.  相似文献   
56.
Rendezvous search finds the strategies that players should use in order to find one another when they are separated in a region. Previous papers have concentrated on the case where there are two players searching for one another. This paper looks at the problem when there are more than two players and concentrates on what they should do if some but not all of them meet together. It looks at two strategies—the stick together one and the split up and meet again one. This paper shows that the former is optimal among the class of strategies which require no memory and are stationary, and it gives a method of calculating the expected rendezvous time under it. However, simulation results comparing both strategies suggest that in most situations the split up and meet again strategy which requires some memory leads to faster expected rendezvous times. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:710–721, 2001  相似文献   
57.
58.
We consider a reader—writer system consisting of a single server and a fixed number of jobs (or customers) belonging to two classes. Class one jobs are called readers and any number of them can be processed simultaneously. Class two jobs are called writers and they have to be processed one at a time. When a writer is being processed no other writer or readers can be processed. A fixed number of readers and writers are ready for processing at time 0. Their processing times are independent random variables. Each reader and writer has a fixed waiting cost rate. We find optimal scheduling rules that minimize the expected total waiting cost (expected total weighted flowtime). We consider both nonpreemptive and preemptive scheduling. The optimal nonpreemptive schedule is derived by a variation of the usual interchange argument, while the optimal schedule in the preemptive case is given by a Gittins index policy. These index policies continue to be optimal for systems in which new writers enter the system in a Poisson fashion. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 483–495, 1998  相似文献   
59.
We consider a single-machine scheduling model in which the job processing times are controllable variables with linear costs. The objective is to minimize the sum of the cost incurred in compressing job processing times and the cost associated with the number of late jobs. The problem is shown to be NP-hard even when the due dates of all jobs are identical. We present a dynamic programming solution algorithm and a fully polynomial approximation scheme for the problem. Several efficient heuristics are proposed for solving the problem. Computational experiments demonstrate that the heuristics are capable of producing near-optimal solutions quickly. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 67–82, 1998  相似文献   
60.
Estimating the performance of an automatic target recognition (ATR) system in terms of its probability of successfully identifying a target involves extensive image collection and processing, which can be very time‐consuming and expensive. Therefore, we investigate the Wald sequential test for the difference in two proportions as a sample size‐reducing alternative to ranking and selection procedures and confidence intervals. An analysis of the test parameters leads to a practical methodology for implementing the Wald test for fairly comparing two systems, based on specific experimental goals. The test is also extended with the modified, sequentially rejective Bonferroni procedure for the multiple pairwise comparison of more than two systems. Two sampling schemes for different experimental goals are also discussed. The test methodology is applied to actual data to compare different configurations of a specific ATR system, with the results demonstrating that the modified Wald sequential procedure is a useful alternative to comparing proportions with confidence intervals, particularly when data are expensive. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 357–371, 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号