首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   17篇
  国内免费   1篇
  362篇
  2021年   5篇
  2019年   9篇
  2018年   6篇
  2017年   10篇
  2016年   8篇
  2015年   6篇
  2014年   9篇
  2013年   76篇
  2012年   7篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2003年   3篇
  2002年   3篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   7篇
  1995年   2篇
  1994年   5篇
  1993年   9篇
  1992年   6篇
  1991年   8篇
  1990年   2篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   8篇
  1979年   7篇
  1978年   8篇
  1976年   7篇
  1975年   10篇
  1974年   6篇
  1973年   8篇
  1972年   5篇
  1971年   4篇
  1970年   5篇
  1969年   4篇
  1968年   5篇
  1967年   3篇
排序方式: 共有362条查询结果,搜索用时 15 毫秒
321.
“Evergreening” is a strategy wherein an innovative pharmaceutical firm introduces an upgrade of its current product when the patent on this product expires. The upgrade is introduced with a new patent and is designed to counter competition from generic manufacturers that seek to imitate the firm's existing product. However, this process is fraught with uncertainty because the upgrade is subject to stringent guidelines and faces approval risk. Thus, an incumbent firm has to make an upfront production capacity investment without clarity on whether the upgrade will reach the market. This uncertainty may also affect the capacity investment of a competing manufacturer who introduces a generic version of the incumbent's existing product but whose market demand depends on the success or failure of the upgrade. We analyze a game where capacity investment occurs before uncertainty resolution and firms compete on prices thereafter. Capacity considerations that arise due to demand uncertainty introduce new factors into the evergreening decision. Equilibrium analysis reveals that the upgrade's estimated approval probability needs to exceed a threshold for the incumbent to invest in evergreening. This threshold for evergreening increases as the intensity of competition in the generic market increases. If evergreening is optimal, the incumbent's capacity investment is either decreasing or nonmonotonic with respect to low end market competition depending on whether the level of product improvement in the upgrade is low or high. If the entrant faces a capacity constraint, then the probability threshold for evergreening is higher than the case where the entrant is not capacity constrained. Finally, by incorporating the risk‐return trade‐off that the incumbent faces in terms of the level of product improvement versus the upgrade success probability, we can characterize policy for a regulator. We show that the introduction of capacity considerations may maximize market coverage and/or social surplus at incremental levels of product improvement in the upgrade. This is contrary to the prevalent view of regulators who seek to curtail evergreening involving incremental product improvement. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 71–89, 2016  相似文献   
322.
We introduce and study a generalization of the classic sequential testing problem, asking to identify the correct state of a given series system that consists of independent stochastic components. In this setting, costly tests are required to examine the state of individual components, which are sequentially tested until the correct system state can be uniquely identified. The goal is to propose a policy that minimizes the expected testing cost, given a‐priori probabilistic information on the stochastic nature of each individual component. Unlike the classic setting, where variables are tested one after the other, we allow multiple tests to be conducted simultaneously, at the expense of incurring an additional set‐up cost. The main contribution of this article consists in showing that the batch testing problem can be approximated in polynomial time within factor , for any fixed . In addition, we explain how, in spite of its highly nonlinear objective function, the batch testing problem can be formulated as an approximate integer program of polynomial size, while blowing up its expected cost by a factor of at most . Finally, we conduct extensive computational experiments, to demonstrate the practical effectiveness of these algorithms as well as to evaluate their limitations. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 275–286, 2016  相似文献   
323.
For the single‐machine scheduling problem with the objective of simultaneously minimizing total flow time and number of tardy jobs, a lower bound on the number of efficient sequences is known. However, the proof thereof, which makes use of a modified version of Smith's algorithm, is unduly lengthy and sophisticated. Adopting a totally new point of view, we present in this short article a much simpler proof based on the naive idea of pairwise interchange. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 346–348, 2016  相似文献   
324.
In this article, we define two different workforce leveling objectives for serial transfer lines. Each job is to be processed on each transfer station for c time periods (e.g., hours). We assume that the number of workers needed to complete each operation of a job in precisely c periods is given. Jobs transfer forward synchronously after every production cycle (i.e., c periods). We study two leveling objectives: maximin workforce size () and min range (R). Leveling objectives produce schedules where the cumulative number of workers needed in all stations of a transfer line does not experience dramatic changes from one production cycle to the next. For and a two‐station system, we develop a fast polynomial algorithm. The range problem is known to be NP‐complete. For the two‐station system, we develop a very fast optimal algorithm that uses a tight lower bound and an efficient procedure for finding complementary Hamiltonian cycles in bipartite graphs. Via a computational experiment, we demonstrate that range schedules are superior because not only do they limit the workforce fluctuations from one production cycle to the next, but they also do so with a minor increase in the total workforce size. We extend our results to the m‐station system and develop heuristic algorithms. We find that these heuristics work poorly for min range (R), which indicates that special structural properties of the m‐station problem need to be identified before we can develop efficient algorithms. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 577–590, 2016  相似文献   
325.
Control charts are widely used for process surveillance. The design of a control chart refers to the choice of sample size, the width of the control limits, and the interval between samples. Economic designs have been widely investigated and shown to be an effective method of determining control chart parameters. This article describes two different manufacturing process models to which the X¯ control chart is applied: The first model assumes that the process continues in operation while searches for the assignable cause are made, and the second assumes that the process must be shut down during the search. Economic models of the control chart for these two manufacturing process models are developed, and the sensitivity of the control chart parameters to the choice of model is explored. It is shown that the choice of the proper manufacturing process model is critical because selection of an inappropriate process model may result in significant economic penalties.  相似文献   
326.
Put-to-light order picking systems invert the basic logic of conventional picker-to-parts systems. Instead of successively visiting the storage positions of the stock keeping units (SKUs) when collecting picking orders, an order picker accompanies successive bins each containing multiple items of a specific SKU along a lane of subsequent orders. Whenever the picker passes an order requiring the current SKU, which is indicated by a light signal, she puts the requested number of items into the bin associated with the order. Such an order picking system is well-suited if the assortment is not overly large and all orders demand similar SKUs, so that it is mainly applied in distribution centers of brick-and-mortar retail chains. This paper evaluates four different setups of put-to-light systems, which, during operations, require the solution of different storage assignment and SKU sequencing problems. We formulate these problems, prove computational complexity, and suggest suited solution algorithms. By applying these algorithms in a comprehensive computational study, we benchmark the impact of the four different setups on picking performance. In this way, warehouse managers receive decision support on how to set up their put-to-light systems.  相似文献   
327.
To reduce the time-to-market of newly developed systems, manufacturers increasingly adopt strategies where systems are brought to market while system field reliability is still uncertain. These systems are typically sold under performance-based contracts, which incentivizes potential customers to invest in them despite reliability uncertainty. Such contracts make the manufacturer (partly) responsible for the availability of the system. Subsequently, when field reliability is lower than anticipated, the manufacturer may choose to redesign the system to avoid high contract penalties. Redesign is a costly effort which may substantially increase field reliability. Deciding when to redesign is challenging, especially because the initial failure rate estimate by the system's engineers is refined over time as failure data accrues. We propose a model that endogenizes the failure rate updating to analyze this tactical redesign decision. We study additive and multiplicative redesigns and show that the optimal policy has a control limit structure. We benchmark our optimal policy against a static counterpart numerically, and conclude that basing redesign decisions on the updated estimate of the failure rate can substantially reduce costs.  相似文献   
328.
Ethnicity and ideology are frequently used to determine whether an armed group is hostile or friendly vis-à-vis the state. By contrast, I argue that the social structure of insurgent movements holds more explanatory power for their respective positions than ethnicity or ideology. To illustrate this, I apply Pierre Bourdieu’s concept of a contest between forces of ‘conservation’ and forces of ‘heresy’ to the current Afghanistan war. I demonstrate that the social structure of the Taleban renders them prone to ‘heresy’, while the formerly second biggest insurgent group, Gulbuddin Hekmatyar’s party, has rather been an impeded force of ‘conservation.’  相似文献   
329.
In this paper we address a bin-packing problem which possesses a variety of modifications of the classic theme. Among these are bin-dependent chip weights, bin costs, and bin-dependent penalties for unused capacity. Lagrangian relaxations are employed in the context of a branch-and-bound framework in order to solve the problem after which substantial computational experience is provided.  相似文献   
330.
An important class of network flow problems is that class for which the objective is to minimize the cost of the most expensive unit of flow while obtaining a desired total flow through the network. Two special cases of this problem have been solved, namely, the bottleneck assignment problem and time-minimizing transportation problem. This paper addresses the more general case which we shall refer to as the time-minimizing network flow problem. Associated with each arc is an arc capacity (static) and a transferral time. The objective is to find a maximal flow for which the length (in time) of the longest path carrying flow is minimized. The character of the problem is discussed and a solution algorithm is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号