首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   14篇
  国内免费   1篇
  325篇
  2021年   5篇
  2019年   8篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   4篇
  2014年   7篇
  2013年   59篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2000年   3篇
  1998年   2篇
  1997年   5篇
  1996年   7篇
  1995年   2篇
  1994年   5篇
  1993年   9篇
  1992年   6篇
  1991年   7篇
  1990年   2篇
  1989年   7篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   8篇
  1979年   7篇
  1978年   8篇
  1976年   7篇
  1975年   10篇
  1974年   7篇
  1973年   8篇
  1972年   5篇
  1971年   4篇
  1970年   5篇
  1969年   4篇
  1968年   5篇
  1967年   3篇
排序方式: 共有325条查询结果,搜索用时 0 毫秒
51.
52.
53.
The client‐contractor bargaining problem addressed here is in the context of a multi‐mode resource constrained project scheduling problem with discounted cash flows, which is formulated as a progress payments model. In this model, the contractor receives payments from the client at predetermined regular time intervals. The last payment is paid at the first predetermined payment point right after project completion. The second payment model considered in this paper is the one with payments at activity completions. The project is represented on an Activity‐on‐Node (AON) project network. Activity durations are assumed to be deterministic. The project duration is bounded from above by a deadline imposed by the client, which constitutes a hard constraint. The bargaining objective is to maximize the bargaining objective function comprised of the objectives of both the client and the contractor. The bargaining objective function is expected to reflect the two‐party nature of the problem environment and seeks a compromise between the client and the contractor. The bargaining power concept is introduced into the problem by the bargaining power weights used in the bargaining objective function. Simulated annealing algorithm and genetic algorithm approaches are proposed as solution procedures. The proposed solution methods are tested with respect to solution quality and solution times. Sensitivity analyses are conducted among different parameters used in the model, namely the profit margin, the discount rate, and the bargaining power weights. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
54.
We study the supplier relationship choice for a buyer that invests in transferable capacity operated by a supplier. With a long‐term relationship, the buyer commits to source from a supplier over a long period of time. With a short‐term relationship, the buyer leaves open the option of switching to a new supplier in the future. The buyer has incomplete information about a supplies efficiency, and thus uses auctions to select suppliers and determine the contracts. In addition, the buyer faces uncertain demand for the product. A long‐term relationship may be beneficial for the buyer because it motivates more aggressive bidding at the beginning, resulting a lower initial price. A short‐term relationship may be advantageous because it allows switching, with capacity transfer at some cost, to a more efficient supplier in the future. We find that there exists a critical level of the switching cost above which a long‐term relationship is better for the buyer than a short‐term relationship. In addition, this critical switching cost decreases with demand uncertainty, implying a long‐term relationship is more favorable for a buyer facing volatile demand. Finally, we find that in a long‐term relationship, capacity can be either higher or lower than in a short‐term relationship. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
55.
This paper proposes a kurtosis correction (KC) method for constructing the X? and R control charts for symmetrical long‐tailed (leptokurtic) distributions. The control charts are similar to the Shewhart control charts and are very easy to use. The control limits are derived based on the degree of kurtosis estimated from the actual (subgroup) data. It is assumed that the underlying quality characteristic is symmetrically distributed and no other distributional and/or parameter assumptions are made. The control chart constants are tabulated and the performance of these charts is compared with that of the Shewhart control charts. For the case of the logistic distribution, the exact control limits are derived and are compared with the KC method and the Shewhart method. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
56.
We consider a class of partitioning problems where the partitioned set is a finite set of real numbers and the objective function of a partition is a function of the vector whose coordinates are the sums of the elements in each part of the given partition (the number of such parts is assumed given). We obtain an explicit solution of such partitioning problem with polynomial complexity bounds. © John Wiley & Sons, Inc. Naval Research Logistics 47: 531–540, 2000  相似文献   
57.
Sufficient conditions under which the relevation of two probability distributions is (i) NBU, (ii) IFRA, (iii) IFR are derived. The result for case (iii) corrects an error in a previous article by Baxter.  相似文献   
58.
This article concerns the location of a facility among n points where the points are serviced by “tours” taken from the facility. Tours include m points at a time and each group of m points may become active (may need a tour) with some known probability. Distances are assumed to be rectilinear. For m ≤ 3, it is proved that the objective function is separable in each dimension and an exact solution method is given that involves finding the median of numbers appropriately generated from the problem data. It is shown that the objective function becomes multimodal when some tours pass through four or more points. A bounded heuristic procedure is suggested for this latter case. This heuristic involves solving an auxiliary three-point tour location problem.  相似文献   
59.
60.
Multicollinearity and nonnormal errors are problems often encountered in the application of linear regression. Estimators are proposed for dealing with the simultaneous occurrence of both multicollinearity and nonnormality. These estimators are developed by combining biased estimation techniques with certain robust criteria. An iteratively reweighted least-squares procedure is used to compute the estimates. The performance of the combined estimators is studied empirically through Monte Carlo experiments structured according to factorial designs. With respect to a mean-squared-error criterion, the combined estimators are superior to ordinary least-squares, pure biased estimators, and pure robust estimators when multicollinearity and nonnormality are present. The loss in efficiency for the combined estimators relative to least squares is small when these problems do not occur. Some guidelines for the use of these combined estimators are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号