首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   21篇
  国内免费   6篇
  2022年   1篇
  2021年   11篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   7篇
  2008年   7篇
  2007年   6篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2000年   2篇
  1999年   22篇
  1998年   13篇
  1997年   14篇
  1996年   9篇
  1995年   5篇
  1994年   8篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
排序方式: 共有161条查询结果,搜索用时 263 毫秒
151.
基于油罐基础渗漏特征,结合实验数据,提出油罐动态渗漏边界条件,建立油罐基础渗漏油气扩散数学模型。采用有限差分法对扩散过程进行数值模拟,结合同工况实验室及现场油罐基础渗漏数据进行对比分析,并对模型的准确性和可靠度进行了验证。结果表明,模型计算结果与实验数据吻合较好,相对误差在可接受范围内,该模型能够准确预测监测点油气到达时刻,揭示油气渗漏扩散规律。  相似文献   
152.
Impact velocity (v0), target strength (fc) and target thickness (hc) are important factors affecting opening damage ((D)) of PELE penetration into RC target. In this paper, based on the three influence factors of v0, fc and hc, experimental and numerical simulation studies on PELE penetration into RC target were carried out. The study results show that: (1) Since interaction force (or penetration resistance) between pro-jectile and target is positively correlated with v0 and fc, with the increase of v0 and fc, deformation mode of jacket is changed from small bending deformation to large bending deformation and then to curling deformation. Therefore, the variation of jacket deformation mode causes opening diameter of RC target to increase first and then to decrease. It is found that the two factors approximately satisfy a quadratic function relationship, respectively. (2) For PELE projectile penetrating RC targets with thickness of 80—400 mm, the opening diameter of six sets of RC targets grows from 240 to 500 mm, and hc with (D) approximately satisfy a linear relationship. (3) Based on the above study results, the relationship be-tween two dimensionless parameters (I= (mv20/d31fc) and H= hc/l ) and dimensionless opening diameter ((D)/d1) was determined. Combined with the results of previous research, a dimensionless opening diameter model (D)/d1=f1(Q,G,I)f2(H) was established. By tests verified, the test results are all within ±10%error of the theoretical model, which verifies the accuracy of the model.  相似文献   
153.
To study the thermal decomposition of Al/ZrH2/PTFE with different Al particle size as well as mechanical strength and impact sensitivity under medium and low strain rates, molding-vacuum sintering was adopted to prepare four groups of power materials and cylindrical specimens with different Al particle size. The active decomposition temperature of ZrH2 was obtained by TG-DSC, and the quasi-static me-chanics/reaction characteristics as well as the impact sensitivity of the specimen were studied respec-tively by quasi-static compression and drop-hammer test. The results show that the yield strength of the material decreased with the increase of the Al particle size, while the compressive strength, failure strain and toughness increased first and then decreased, which reached the maximum values of 116.61 MPa, 191%, and 119.9 MJ/m respectively when the Al particle size is 12—14μm because of particle size grading. The specimens with the highest strength and toughness formed circumferential open cracks and reacted partly when pressed. Those with developmental cracks formed inside did not react. It is considered that fracture of specimens first triggered initial reaction between Al and PTFE to release an amount of heat. Then ZrH2 was activated and decomposed, and participated in subsequent reaction to generate ZrC. The impact sensitivity of the specimens decreased with the increase of Al particle size.  相似文献   
154.
Explosive welding technique is widely used in many industries. This technique is useful to weld different kinds of metal alloys that are not easily welded by any other welding methods. Interlayer plays an important role to improve the welding quality and control energy loss during the collision process. In this paper, the Ti6Al4V plate was welded with a copper plate in the presence of a commercially pure titanium interlayer. Microstructure details of welded composite plate were observed through optical and scanning electron microscope. Interlayer-base plate interface morphology showed a wavy structure with solid melted regions inside the vortices. Moreover, the energy dispersive spectroscopy analysis in the interlayer-base interface reveals that there are some identified regions of different kinds of chemical equilibrium phases of Cu–Ti, i.e. CuTi, Cu2Ti, CuTi2, Cu4Ti, etc. To study the mechanical properties of composite plates, mechanical tests were conducted, including the tensile test, bending test, shear test and Vickers hardness test. Numerical simulation of explosive welding process was performed with coupled Smooth Particle Hydrodynamic method, Euler and Arbitrary Lagrangian-Eulerian method. The multi-physics process of explosive welding, including detonation, jetting and interface morphology, was observed with simulation. Moreover, simulated plastic strain, temperature and pressure profiles were analysed to understand the welding conditions. Simulated results show that the interlayer base plate interface was created due to the high plastic deformation and localized melting of the parent plates. At the collision point, both alloys behave like fluids, resulting in the formation of a wavy morphology with vortices, which is in good agreement with the experimental results.  相似文献   
155.
In urban rail transit systems of large cities, the headway and following distance of successive trains have been compressed as much as possible to enhance the corridor capacity to satisfy extremely high passenger demand during peak hours. To prevent train collisions and ensure the safety of trains, a safe following distance of trains must be maintained. However, this requirement is subject to a series of complex factors, such as the uncertain train braking performance, train communication delay, and driver reaction time. In this paper, we propose a unified mathematical framework to analyze the safety‐oriented reliability of metro train timetables with different corridor capacities, that is, the train traffic density, and determine the most reliable train timetable for metro lines in an uncertain environment. By employing a space‐time network representation in the formulations, the reliability‐based train timetabling problem is formulated as a nonlinear stochastic programming model, in which we use 0‐1 variables to denote the time‐dependent velocity and position of all involved trains. Several reformulation techniques are developed to obtain an equivalent mixed integer programming model with quadratic constraints (MIQCP) that can be solved to optimality by some commercial solvers. To improve the computational efficiency of the MIQCP model, we develop a dual decomposition solution framework that decomposes the primal problem into several sets of subproblems by dualizing the coupling constraints across different samples. An exact dynamic programming combined with search space reduction strategies is also developed to solve the exact optimal solutions of these subproblems. Two sets of numerical experiments, which involve a relatively small‐scale case and a real‐world instance based on the operation data of the Beijing subway Changping Line are implemented to verify the effectiveness of the proposed approaches.  相似文献   
156.
装备技术状态控制是技术状态管理的重点与核心,贯穿于技术状态项目研制、生产全过程,也是军事代表开展技术状态管理监督的重点。本文主要对技术状态控制和监督的内容进行了介绍,并着重介绍了在控制和监督过程中应注意的几个问题。  相似文献   
157.
随着软件密集型装备的大量使用,软件密集型装备的地位越来越突出。本文阐述了加强软件密集型装备综合保障能力建设的重要性,对国内外软件密集型装备综合保障的研究情况进行了比较分析,并提出推进我军软件密集型装备综合保障能力建设应该把握的问题。  相似文献   
158.
新中国成立后,一直面临着帝国主义的封锁、包围和战争威胁.特别是进入20世纪60年代中期以后,随着中国周边安全环境的日益恶化,新中国领导人开始强调要准备打仗,提出并确立立足于"早打、大打、打核战争"的战备指导思想.  相似文献   
159.
容差设计是健壮设计的重要组成部分,装备容差设计是复杂装备设计的重要内容之一。本文针对装备有寿件容差设计和低组装等级容差设计进行了初步探讨,给出了计算方法,并结合实例说明了计算过程。  相似文献   
160.
伪装武器在现代防空作战中有重要意义,介绍了目前伪装武器装备的几种基本方法、各自的定义、优缺点,并结合实际说明伪装方法的应用,从中得出了一些有益的结论。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号