首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   29篇
  国内免费   6篇
  2022年   1篇
  2021年   11篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   7篇
  2008年   9篇
  2007年   10篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2000年   3篇
  1999年   23篇
  1998年   14篇
  1997年   14篇
  1996年   9篇
  1995年   5篇
  1994年   8篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
排序方式: 共有176条查询结果,搜索用时 0 毫秒
171.
以可用度为目标的功能检测模型   总被引:2,自引:0,他引:2  
依据产品潜在故障的概念,将产品划分为“正常”、“潜在故障”和“功能故障”三种状态,并将产品从“新的”发展到“潜在故障”时间间隔和从“潜在故障”发展到“功能故障”时间间隔分别作为随机变量进行处理,利用可靠性数学的方法,建立了以可用度为目标的功能检测模型,包括基本模型和实际应用中变化时的模型,举例给出了模型输出结果的特征和敏感性。  相似文献   
172.
为解决部队的日常训练,设计了双三七自行高炮火控系统操作模拟器.由于其火控系统规模大,系统的多数功能是通过面板上繁多的开关、旋钮实现的,这为系统的仿真带来极大困难.本文介绍了通过综合利用数字仿真、数字检测、数字控制等技术,完成该系统仿真的设计.  相似文献   
173.
基于油罐基础渗漏特征,结合实验数据,提出油罐动态渗漏边界条件,建立油罐基础渗漏油气扩散数学模型。采用有限差分法对扩散过程进行数值模拟,结合同工况实验室及现场油罐基础渗漏数据进行对比分析,并对模型的准确性和可靠度进行了验证。结果表明,模型计算结果与实验数据吻合较好,相对误差在可接受范围内,该模型能够准确预测监测点油气到达时刻,揭示油气渗漏扩散规律。  相似文献   
174.
Impact velocity (v0), target strength (fc) and target thickness (hc) are important factors affecting opening damage ((D)) of PELE penetration into RC target. In this paper, based on the three influence factors of v0, fc and hc, experimental and numerical simulation studies on PELE penetration into RC target were carried out. The study results show that: (1) Since interaction force (or penetration resistance) between pro-jectile and target is positively correlated with v0 and fc, with the increase of v0 and fc, deformation mode of jacket is changed from small bending deformation to large bending deformation and then to curling deformation. Therefore, the variation of jacket deformation mode causes opening diameter of RC target to increase first and then to decrease. It is found that the two factors approximately satisfy a quadratic function relationship, respectively. (2) For PELE projectile penetrating RC targets with thickness of 80—400 mm, the opening diameter of six sets of RC targets grows from 240 to 500 mm, and hc with (D) approximately satisfy a linear relationship. (3) Based on the above study results, the relationship be-tween two dimensionless parameters (I= (mv20/d31fc) and H= hc/l ) and dimensionless opening diameter ((D)/d1) was determined. Combined with the results of previous research, a dimensionless opening diameter model (D)/d1=f1(Q,G,I)f2(H) was established. By tests verified, the test results are all within ±10%error of the theoretical model, which verifies the accuracy of the model.  相似文献   
175.
To study the thermal decomposition of Al/ZrH2/PTFE with different Al particle size as well as mechanical strength and impact sensitivity under medium and low strain rates, molding-vacuum sintering was adopted to prepare four groups of power materials and cylindrical specimens with different Al particle size. The active decomposition temperature of ZrH2 was obtained by TG-DSC, and the quasi-static me-chanics/reaction characteristics as well as the impact sensitivity of the specimen were studied respec-tively by quasi-static compression and drop-hammer test. The results show that the yield strength of the material decreased with the increase of the Al particle size, while the compressive strength, failure strain and toughness increased first and then decreased, which reached the maximum values of 116.61 MPa, 191%, and 119.9 MJ/m respectively when the Al particle size is 12—14μm because of particle size grading. The specimens with the highest strength and toughness formed circumferential open cracks and reacted partly when pressed. Those with developmental cracks formed inside did not react. It is considered that fracture of specimens first triggered initial reaction between Al and PTFE to release an amount of heat. Then ZrH2 was activated and decomposed, and participated in subsequent reaction to generate ZrC. The impact sensitivity of the specimens decreased with the increase of Al particle size.  相似文献   
176.
Explosive welding technique is widely used in many industries. This technique is useful to weld different kinds of metal alloys that are not easily welded by any other welding methods. Interlayer plays an important role to improve the welding quality and control energy loss during the collision process. In this paper, the Ti6Al4V plate was welded with a copper plate in the presence of a commercially pure titanium interlayer. Microstructure details of welded composite plate were observed through optical and scanning electron microscope. Interlayer-base plate interface morphology showed a wavy structure with solid melted regions inside the vortices. Moreover, the energy dispersive spectroscopy analysis in the interlayer-base interface reveals that there are some identified regions of different kinds of chemical equilibrium phases of Cu–Ti, i.e. CuTi, Cu2Ti, CuTi2, Cu4Ti, etc. To study the mechanical properties of composite plates, mechanical tests were conducted, including the tensile test, bending test, shear test and Vickers hardness test. Numerical simulation of explosive welding process was performed with coupled Smooth Particle Hydrodynamic method, Euler and Arbitrary Lagrangian-Eulerian method. The multi-physics process of explosive welding, including detonation, jetting and interface morphology, was observed with simulation. Moreover, simulated plastic strain, temperature and pressure profiles were analysed to understand the welding conditions. Simulated results show that the interlayer base plate interface was created due to the high plastic deformation and localized melting of the parent plates. At the collision point, both alloys behave like fluids, resulting in the formation of a wavy morphology with vortices, which is in good agreement with the experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号