首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   10篇
  2021年   7篇
  2020年   7篇
  2019年   12篇
  2018年   8篇
  2017年   13篇
  2016年   13篇
  2015年   5篇
  2014年   9篇
  2013年   125篇
  2009年   7篇
  2007年   12篇
  2005年   5篇
  2004年   5篇
  2003年   9篇
  2002年   8篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   8篇
  1997年   10篇
  1996年   11篇
  1995年   9篇
  1994年   9篇
  1993年   12篇
  1992年   13篇
  1991年   16篇
  1990年   11篇
  1989年   20篇
  1988年   16篇
  1987年   13篇
  1986年   16篇
  1985年   13篇
  1984年   5篇
  1983年   6篇
  1982年   11篇
  1981年   7篇
  1980年   10篇
  1979年   10篇
  1978年   11篇
  1977年   7篇
  1976年   7篇
  1975年   8篇
  1974年   13篇
  1973年   9篇
  1972年   4篇
  1971年   8篇
  1970年   9篇
  1969年   6篇
  1967年   6篇
  1948年   4篇
排序方式: 共有600条查询结果,搜索用时 15 毫秒
171.
The purpose of this research is to investigate simulation algorithms for nonhomogeneous Poisson processes with proportional intensities. Two algorithmic approaches are studied: inversion and thinning. Motivated by industrial practices, the covariate vector involved in the simulation is permitted to change after every event (or observation). The algorithms are extended to permit the simulation of general nonhomogeneous Poisson processes with possible discontinuities both in baseline intensity and covariate vector. This latter extension can be used to facilitate a wide range of failure situations that can arise with repairable systems. © 1994 John Wiley & Sons, Inc.  相似文献   
172.
An algorithm is given for the conditional p-center problem, namely, the optimal location of one or more additional facilities in a region with given demand points and one or more preexisting facilities. The solution dealt with here involves the minimax criterion and Euclidean distances in two-dimensional space. The method used is a generalization to the present conditional case of a relaxation method previously developed for the unconditional p-center problems. Interestingly, its worst-case complexity is identical to that of the unconditional version, and in practice, the conditional algorithm is more efficient. Some test problems with up to 200 demand points have been solved. © 1993 John Wiley & Sons, Inc.  相似文献   
173.
The United States military frequently has difficulty retaining enlisted personnel beyond their initial enlistment. A bonus program within each service, called a Selective Reenlistment Bonus (SRB) program, seeks to enhance reenlistments and thus reduce personnel shortages in critical military occupational specialties (MOSs). The amount of bonus is set by assigning “SRB multipliers” to each MOS. We develop a nonlinear integer program to select multipliers which minimize a function of deviations from desired reenlistment targets. A Lagrangian relaxation of a linearized version of the integer program is used to obtain lower bounds and feasible solutions. The best feasible solution, discovered in a coordinate search of the Lagrangian function, is heuristically improved by apportioning unexpended funds. For large problems a heuristic variable reduction is employed to speed model solution. U.S. Army data and requirements for FY87 yield a 0-1 integer program with 12,992 binary variables and 273 constraints, which is solved within 0.00002% of optimality on an IBM 3033AP in less than 1.7 seconds. More general models with up to 463,000 binary variables are solved, on average, to within 0.009% of optimality in less than 1.8 minutes. The U.S. Marine Corps has used a simpler version of this model since 1986. © 1993 John Wiley & Sons, Inc.  相似文献   
174.
The system under study is a single item, two‐echelon production‐inventory system consisting of a capacitated production facility, a central warehouse, and M regional distribution centers that satisfy stochastic demand. Our objective is to determine a system base‐stock level which minimizes the long run average system cost per period. Central to the approach are (1) an inventory allocation model and associated convex cost function designed to allocate a given amount of system inventory across locations, and (2) a characterization of the amount of available system inventory using the inventory shortfall random variable. An exact model must consider the possibility that inventories may be imbalanced in a given period. By assuming inventory imbalances cannot occur, we develop an approximation model from which we obtain a lower bound on the per period expected cost. Through an extensive simulation study, we analyze the quality of our approximation, which on average performed within 0.50% of the lower bound. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 377–398, 2000  相似文献   
175.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
176.
In this paper we study a machine repair problem in which a single unreliable server maintains N identical machines. The breakdown times of the machines are assumed to follow an exponential distribution. The server is subject to failure and the failure times are exponentially distributed. The repair times of the machine and the service times of the repairman are assumed to be of phase type. Using matrix‐analytic methods, we perform steady state analysis of this model. The time spent by a failed machine in service and the total time in the repair facility are shown to be of phase type. Several performance measures are evaluated. An optimization problem to determine the number of machines to be assigned to the server that will maximize the expected total profit per unit time is discussed. An illustrative numerical example is presented. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 462–480, 2003  相似文献   
177.
In this paper we consider networks that consist of components operating under a randomly changing common environment. Our work is motivated by power system networks that are subject to fluctuating weather conditions over time that affect the performance of the network. We develop a general setup for any network that is subject to such environment and present results for network reliability assessment under two repair scenarios. We also present Bayesian analysis of network failure data and illustrate how reliability predictions can be obtained for the network. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 574–591, 2003  相似文献   
178.
179.
Glossary     
  相似文献   
180.
The Replenishment at Sea Planner (RASP) is saving the U.S. Navy millions of dollars a year by reducing fuel consumption of its Combat Logistics Force (CLF). CLF shuttle supply ships deploy from ports to rendezvous with underway U.S. combatants and those of coalition partners. The overwhelming commodity transferred is fuel, ship‐to‐ship by hoses, while other important packaged goods and spare parts are high‐lined, or helicoptered between ships. The U.S. Navy is organized in large areas of responsibility called numbered fleets, and within each of these a scheduler must promulgate a daily forecast of CLF shuttle operations. The operational planning horizon extends out several weeks, or as far into the future as we can forecast demand. We solve RASP with integer linear optimization and a purpose‐built heuristic. RASP plans Replenishment‐at‐Sea (RAS) events with 4‐hour (Navy watch) time fidelity. For five years, RASP has served two purposes: (1) it helps schedulers generate a daily schedule and animates it using Google Earth, and (2) it automates reports command‐to‐ship messages that are essential to keep this complex logistics system operating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号