首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   4篇
  2021年   2篇
  2019年   7篇
  2018年   1篇
  2017年   5篇
  2016年   8篇
  2015年   2篇
  2014年   1篇
  2013年   32篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   1篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1971年   3篇
  1969年   1篇
  1968年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
91.
92.
In this paper marginal investment costs are assumed known for two kinds of equipment stocks employed to supply telecommunications services: trunks and switching facilities. A network hierarchy is defined which includes important cases occurring in the field and also appearing in the literature. A different use of the classical concept of the marginal capacity of an additional trunk at prescribed blocking probability leads to a linear programming supply model which can be used to compute the sizes of all the high usage trunk groups. The sizes of the remaining trunk groups are approximated by the linear programming models, but can be determined more accurately by alternate methods once all high usage group sizes are computed. The approach applies to larger scale networks than previously reported in the literature and permits direct application of the duality theory of linear programming and its sensitivity analyses to the study and design of switched probabilistic communications networks with multiple busy hours during the day. Numerical results are presented for two examples based on field data, one of which having been designed by the multi-hour engineering method.  相似文献   
93.
94.
This paper considers the two different flow shop scheduling problems that arise when, in a two machine problem, one machine is characterized by sequence dependent setup times. The objective is to determine a schedule that minimizes makespan. After establishing the optimally of permutation schedules for both of these problems, an efficient dynamic programming formulation is developed for each of them. Each of these formulations is shown to be comparable, from a computational standpoint, to the corresponding formulation of the traveling salesman problem. Then, the relative merits of the dynamic programming and branch and bound approaches to these two scheduling problems are discussed.  相似文献   
95.
96.
We develop a heuristic procedure for partitioning graphs into clusters of nodes such that each cluster of nodes induces a connected subgraph with the objective of minimizing the differences within clusters as measured by the total differences between all pairs of nodes of a cluster. We apply our procedure to determine optimal delivery zones for community sections of a major newspaper while including a number of operational constraints. Our results demonstrate a 18–56% improvement in the total differences within the zones designed over the usual intuitive heuristics. Given the magnitude of the revenue generated by larger local newspapers through zoning, our method demonstrates how better zoning can significantly enhance the value of segmentation. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
97.
Standard approaches to classical inventory control problems treat satisfying a predefined demand level as a constraint. In many practical contexts, however, total demand is comprised of separate demands from different markets or customers. It is not always clear that constraining a producer to satisfy all markets is an optimal approach. Since the inventory‐related cost of an item depends on total demand volume, no clear method exists for determining a market's profitability a priori, based simply on per unit revenue and cost. Moreover, capacity constraints often limit a producer's ability to meet all demands. This paper presents models to address economic ordering decisions when a producer can choose whether to satisfy multiple markets. These models result in a set of nonlinear binary integer programming problems that, in the uncapacitated case, lend themselves to efficient solution due to their special structure. The capacitated versions can be cast as nonlinear knapsack problems, for which we propose a heuristic solution approach that is asymptotically optimal in the number of markets. The models generalize the classical EOQ and EPQ problems and lead to interesting optimization problems with intuitively appealing solution properties and interesting implications for inventory and pricing management. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
98.
In a master surgery scheduling (MSS) problem, a hospital's operating room (OR) capacity is assigned to different medical specialties. This task is critical since the risk of assigning too much or too little OR time to a specialty is associated with overtime or deficit hours of the staff, deferral or delay of surgeries, and unsatisfied—or even endangered—patients. Most MSS approaches in the literature focus only on the OR while neglecting the impact on downstream units or reflect a simplified version of the real‐world situation. We present the first prediction model for the integrated OR scheduling problem based on machine learning. Our three‐step approach focuses on the intensive care unit (ICU) and reflects elective and urgent patients, inpatients and outpatients, and all possible paths through the hospital. We provide an empirical evaluation of our method with surgery data for Universitätsklinikum Augsburg, a German tertiary care hospital with 1700 beds. We show that our model outperforms a state‐of‐the‐art model by 43% in number of predicted beds. Our model can be used as supporting tool for hospital managers or incorporated in an optimization model. Eventually, we provide guidance to support hospital managers in scheduling surgeries more efficiently.  相似文献   
99.
A generalized parallel replacement problem is considered with both fixed and variable replacement costs, capital budgeting, and demand constraints. The demand constraints specify that a number of assets, which may vary over time, are required each period over a finite horizon. A deterministic, integer programming formulation is presented as replacement decisions must be integer. However, the linear programming relaxation is shown to have integer extreme points if the economies of scale binary variables are fixed. This allows for the efficient computation of large parallel replacement problems as only a limited number of 0–1 variables are required. Examples are presented to provide insight into replacement rules, such as the “no‐splitting‐rule” from previous research, under various demand scenarios. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 40–56, 2000  相似文献   
100.
In 2014, Colonel M. Shane Riza published an article in this journal arguing that remotely piloted aircraft (RPA) and robotic weapons threaten the US Air Force’s warrior ethos. Riza has clearly articulated the sentiments of one side of a vibrant debate within our service. This paper presents an alternative view; a view held by some who have experienced these new forms and tools of war, and who have wrestled with their implications first-hand. In this paper, we address some methodological concerns with Riza’s approach and then engage some misunderstandings about RPA’s relationship to military history and to risk. The second part of this paper takes a close look at some of the early Just War thinkers to determine what implications the tradition may have on the warrior ethos. We propose, as an alternative to Riza’s position, a return to an ethos grounded in humility, charity, and a conception of war as a last resort; in short, a return to the Just Warrior Ethos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号