首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   22篇
  2021年   11篇
  2020年   6篇
  2019年   10篇
  2018年   6篇
  2017年   7篇
  2016年   10篇
  2015年   11篇
  2014年   8篇
  2013年   59篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   9篇
  2007年   10篇
  2006年   4篇
  2005年   6篇
  2004年   11篇
  2003年   7篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   14篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   11篇
  1994年   6篇
  1993年   5篇
  1992年   11篇
  1991年   12篇
  1990年   6篇
  1989年   8篇
  1988年   9篇
  1987年   11篇
  1986年   9篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1981年   7篇
  1980年   3篇
  1979年   6篇
  1978年   6篇
  1977年   7篇
  1975年   3篇
  1974年   5篇
  1973年   5篇
  1972年   3篇
  1971年   6篇
  1969年   4篇
  1968年   5篇
排序方式: 共有422条查询结果,搜索用时 15 毫秒
121.
In this article we consider two versions of two-on-two homogeneous stochastic combat and develop expressions, in each case, for the state probabilities. The models are natural generalizations of the exponential Lanchester square law model. In the first version, a marksman whose target is killed resumes afresh the killing process on a surviving target; in the second version, the marksman whose target is killed merely uses up his remaining time to a kill on a surviving target. Using the state probabilities we then compute such important combat measures as (1) the mean and variance of the number of survivors as they vary with time for each of the sides, (2) the win probabilities for each of the sides, and (3) the mean and variance of the battle duration time. As an application, computations were made for the specific case of a gamma (2) interfiring time random variable for each side and the above combat measures were compared with the appropriate exponential and deterministic Lanchester square law approximations. The latter two are shown to be very poor approximations in this case.  相似文献   
122.
In this article we deal with the shortest queue model with jockeying. We assume that the arrivals are Poisson, each of the exponential servers has his own queue, and jockeying among the queues is permitted. Explicit solutions of the equilibrium probabilities, the expected customers, and the expected waiting time of a customer in the system are given, which only depend on the traffic intensity. Numerical results can be easily obtained from our solutions. Several examples are provided in the article.  相似文献   
123.
We schedule a set of illuminators (homing devices) to strike a set of targets using surface-to-air missiles in a naval battle. The task is viewed as a production floor shop scheduling problem of minimizing the total weighted flow time, subject to time-window job availability and machine downtime side constraints. A simple algorithm based on solving assignment problems is developed for the case when all the job processing times are equal and the data are all integer. For the general case of scheduling jobs with unequal processing times, we develop two alternate formulations and analyze their relative strengths by comparing their respective linear programming relaxations. We select the better formulation in this comparison and exploit its special structures to develop several effective heuristic algorithms that provide good-quality solutions in real time; this is an essential element for use by the Navy. © 1995 John Wiley & Sons, Inc.  相似文献   
124.
125.
This article considers a two-person game in which the first player has access to certain information that is valuable but unknown to the second player. The first player can distort the information before it is passed on to the second player. The purpose in distorting the information is to render it as useless as possible to the second player. Based on the distorted information received, the second player then maximizes some given objective. In certain cases he may still be able to use the distorted information, but sometimes the information has been so badly distorted that it becomes completely useless to him. © 1993 John Wiley & Sons, Inc.  相似文献   
126.
The purpose of this article is to investigate some managerial insights related to using the all-unit quantity discount policies under various conditions. The models developed here are general treatments that deal with four major issues: (a) one buyer or multiple buyers, (b) constant or price-elastic demand, (c) the relationship between the supplier's production schedule or ordering policy and the buyers' ordering sizes, and (d) the supplier either purchasing or manufacturing the item. The models are developed with two objectives: the supplier's profit improvement or the supplier's increased profit share analysis. Algorithms are developed to find optimal decision policies. Our analysis provides the supplier with both the optimal all-unit quantity discount policy and the optimal production (or ordering) strategy. Numerical examples are provided. © 1993 John Wiley & Sons. Inc.  相似文献   
127.
We consider server scheduling on parallel dedicated machines to minimize the makespan. Each job has a loading operation and a processing operation. The loading operation requires a server that serves all the jobs. Each machine has a given set of jobs to process, and the processing sequence is known and fixed. We design a polynomial‐time algorithm to solve the two‐machine case of the problem. When the number of machines is arbitrary, the problem becomes strongly NP‐hard even if all the jobs have the same processing length or all the loading operations require a unit time. We design two heuristic algorithms to treat the case where all the loading times are unit and analyze their performance.  相似文献   
128.
The reformulation‐linearization technique (RLT) is a methodology for constructing tight linear programming relaxations of mixed discrete problems. A key construct is the multiplication of “product factors” of the discrete variables with problem constraints to form polynomial restrictions, which are subsequently linearized. For special problem forms, the structure of these linearized constraints tends to suggest that certain classes may be more beneficial than others. We examine the usefulness of subsets of constraints for a family of 0–1 quadratic multidimensional knapsack programs and perform extensive computational tests on a classical special case known as the 0–1 quadratic knapsack problem. We consider RLT forms both with and without these inequalities, and their comparisons with linearizations derived from published methods. Interestingly, the computational results depend in part upon the commercial software used. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
129.
In this paper we optimally control service rates for an inventory system of service facilities with perishable products. We consider a finite capacity system where arrivals are Poisson‐distributed, lifetime of items have exponential distribution, and replenishment is instantaneous. We determine the service rates to be employed at each instant of time so that the long‐run expected cost rate is minimized for fixed maximum inventory level and capacity. The problem is modelled as a semi‐Markov decision problem. We establish the existence of a stationary optimal policy and we solve it by employing linear programming. Several numerical examples which provide insight to the behavior of the system are presented. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 464–482, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10021  相似文献   
130.
In planar location problems with barriers one considers regions which are forbidden for the siting of new facilities as well as for trespassing. These problems are important since they model various actual applications. The resulting mathematical models have a nonconvex objective function and are therefore difficult to tackle using standard methods of location theory even in the case of simple barrier shapes and distance functions. For the case of center objectives with barrier distances obtained from the rectilinear or Manhattan metric, it is shown that the problem can be solved in polynomial time by identifying a dominating set. The resulting genuinely polynomial algorithm can be combined with bound computations which are derived from solving closely connected restricted location and network location problems. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 647–665, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10038  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号