首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   9篇
  379篇
  2021年   10篇
  2019年   7篇
  2017年   8篇
  2016年   6篇
  2015年   11篇
  2014年   8篇
  2013年   67篇
  2010年   2篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2003年   2篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   8篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   8篇
  1990年   2篇
  1989年   7篇
  1988年   14篇
  1987年   6篇
  1986年   15篇
  1985年   9篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   8篇
  1980年   5篇
  1979年   11篇
  1978年   7篇
  1977年   7篇
  1976年   2篇
  1975年   9篇
  1974年   7篇
  1973年   5篇
  1972年   7篇
  1971年   4篇
  1970年   4篇
  1969年   6篇
  1968年   3篇
  1967年   2篇
  1966年   3篇
排序方式: 共有379条查询结果,搜索用时 0 毫秒
91.
This paper discusses a novel application of mathematical programming techniques to a regression problem. While least squares regression techniques have been used for a long time, it is known that their robustness properties are not desirable. Specifically, the estimators are known to be too sensitive to data contamination. In this paper we examine regressions based on Least‐sum of Absolute Deviations (LAD) and show that the robustness of the estimator can be improved significantly through a judicious choice of weights. The problem of finding optimum weights is formulated as a nonlinear mixed integer program, which is too difficult to solve exactly in general. We demonstrate that our problem is equivalent to a mathematical program with a single functional constraint resembling the knapsack problem and then solve it for a special case. We then generalize this solution to general regression designs. Furthermore, we provide an efficient algorithm to solve the general nonlinear, mixed integer programming problem when the number of predictors is small. We show the efficacy of the weighted LAD estimator using numerical examples. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
92.
We examine the problem of scheduling n jobs with a common due date on a single machine. The processing time of each job is a random variable, which follows an arbitrary distribution with a known mean and a known variance. The machine is not reliable; it is subject to stochastic breakdowns. The objective is to minimize the expected sum of squared deviations of job completion times from the due date. Two versions of the problem are addressed. In the first one the due date is a given constant, whereas in the second one the due date is a decision variable. In each case, a general form of the deterministic equivalent of the stochastic scheduling problem is obtained when the counting process related to the machine uptime distribution is a generalized Poisson process. A sufficient condition is derived under which optimal sequences are V-shaped with respect to mean processing times. Other characterizations of optimal solutions are also established. Based on the optimality properties, algorithms with pseudopolynomial time complexity are proposed to solve both versions of the problem. © 1996 John Wiley & Sons, Inc.  相似文献   
93.
94.
In many decision-making situations, each activity that can be undertaken may have associated with it both a fixed and a variable cost. Recently, we have encountered serveral practical problems in which the fixed cost of undertaking an activity depends upon which other activities are also undertaken. To our knowledge, no existing optimization model can accomodate such a fixed cost structure. To do so, we have therefore developed a new model called the interactive fixed charge linear programming problem (IFCLP). In this paper we present and motivate problem (IFCLP), study some of its characteristics, and present a finite branch and bound algorithm for solving it. We also discuss the main properties of this algorithm.  相似文献   
95.
We implement a solution procedure for general convex separable programs where a series of relatively small piecewise linear programs are solved as opposed to a single large one, and where, based on bound calculations developed in [13] and [14], the ranges of linearization are systematically reduced for successive programs. The procedure inherits ε-convergence to the global optimum in a finite number of steps, but perhaps its most distinct feature is the rigorous way in which ranges containing an optimal solution are reduced from iteration to iteration. This paper describes the procedure, called successive approximation, discusses its convergence, tightness of the bounds, bound-calculation overhead, and its robustness. It presents a computer implementation to demonstrate its effectiveness for general problems and compares it (1) with the more standard separable programming approach and (2) with one of the recent augmented Lagrangian methods [10] included in a comprehensive study of nonlinear programming codes [12]. It seems clear from over 130 cases resulting from 80 distinct problems studied here that significant savings in terms of computational effort can be realized by a judicious use of the procedure, and the ease with which it can be used is appreciably increased by the robustness it shows. Moreover, for most of these problems, the advantage increases as the size, nonlinearity, and the degree of desired accuracy increase. Other important benefits include significantly smaller storage requirements, the ability to estimate the error in the current solution, and to terminate the algorithm as soon as the acceptable level of accuracy has been achieved. Problems requiring up to about 10,000 nonzero elements in their specification and about 45,000 nonzero elements in the generated separable programs resulting from up to 70 original nonlinear variables and 70 nonlinear constraints are included in the computations.  相似文献   
96.
This paper provides a framework in which warranty policies for non-repairable items can be evaluated according to risk preferences of both buyers and sellers. In particular, a warranty price schedule is established such that sellers are indifferent among the policies. Given this schedule, a buyer's response is expressed by selecting the price-warranty combination that minimizes disutility. Within this framework, a warranty can be viewed as an instrumet of risk management that can induce more sales and greater profitability. For given utility functions, analytical results for the development of a price schedule are developed. Numerical results illustrate the substitution effects between warranty terms, prices, and risk parameters.  相似文献   
97.
Empirical Bayes' methods had been used by Brier, Zacks, and Marlow [1] for estimating performance characteristic vectors of success probabilities. The problem is that of estimating k-dimensional success probabilities of dependent binomial random variables, which are highly correlated. The present study reinforces the results of the previous one by showing, via simulations, that the relative efficiency of the empirical Bayes estimators, compared to the Stein-type and to the maximum-likelihood ones, is very high. This holds even if the success proportions are based on a small number of trials. We study the case of equicorrelation structure with positive correlations.  相似文献   
98.
Software metrics try to identify, define, and assign various indices of merit that can support the quantitative comparisons and evaluations of software in all phases of its life cycle. This article is a state-of-the-art and state-of-the-practice review of literature related to software quality measurements and metrics.  相似文献   
99.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
100.
Facility location models have been applied to problems in the public and private sectors for years. In this article, the author first presents a taxonomy of location problems based on the underlying space in which the problem is embedded. The article illustrates problems from each part of the taxonomy with an emphasis on discrete location problems. Selected recent research in the area is also discussed. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号