首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1337篇
  免费   371篇
  国内免费   59篇
  2024年   4篇
  2023年   6篇
  2022年   27篇
  2021年   70篇
  2020年   28篇
  2019年   8篇
  2018年   15篇
  2017年   22篇
  2016年   13篇
  2015年   63篇
  2014年   70篇
  2013年   65篇
  2012年   74篇
  2011年   74篇
  2010年   103篇
  2009年   113篇
  2008年   91篇
  2007年   99篇
  2006年   68篇
  2005年   44篇
  2004年   22篇
  2003年   6篇
  2002年   5篇
  2001年   9篇
  2000年   27篇
  1999年   118篇
  1998年   85篇
  1997年   72篇
  1996年   54篇
  1995年   49篇
  1994年   45篇
  1993年   39篇
  1992年   37篇
  1991年   38篇
  1990年   46篇
  1989年   9篇
  1988年   5篇
  1987年   13篇
  1986年   6篇
  1985年   9篇
  1983年   12篇
  1982年   3篇
  1978年   1篇
排序方式: 共有1767条查询结果,搜索用时 31 毫秒
901.
《军事历史研究》创刊20年来,在社会各界友人的鼎力支持下,在编辑部各位同仁的辛劳耕耘下,从无到有,由弱到强,历久弥坚,走出了一条不同寻常的创业发展之路。时至今日,可以说影响渐长,初见成功,其学术价值和现实意义也与日俱增,并得到学术界、理论界的肯定和认可。《军事历史研究》办刊的实践再一次证明:军事历史研究在哲学社会科学特别是军事学研究领域具有特殊的作用和重要的地位。  相似文献   
902.
In this paper, we study the problem of scheduling quay cranes (QCs) at container terminals where incoming vessels have different ready times. The objective is to minimize the maximum relative tardiness of vessel departures. The problem can be formulated as a mixed integer linear programming (MILP) model of large size that is difficult to solve directly. We propose a heuristic decomposition approach to breakdown the problem into two smaller, linked models, the vessel‐level and the berth‐level models. With the same berth‐level model, two heuristic methods are developed using different vessel‐level models. Computational experiments show that the proposed approach is effective and efficient. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
903.
熵理论在装备保障指挥组织结构优化中的应用   总被引:2,自引:0,他引:2  
把熵理论应用于装备保障指挥组织结构的优化设计,并以某军区装备部机关组织结构为例,从量化的角度比较改革前后组织结构的时效熵和质量熵,得出结论:改革后的军区装备部机关组织结构有序度优于改革前机关组织结构有序度。  相似文献   
904.
直接采用粒子模拟方法较难实现带电粒子束团千米量级的长程传输模拟,针对此问题以静电模型为基础,引入移动窗技术,使百米量级的粒子传输窗口与束团同步推进运动,建立了带电粒子束团的长程传输模型。将模拟得到的带电粒子束团径向膨胀特性同包络方程的计算结果进行对比,两者吻合较好,证明了在带电粒子束团长程传输模拟研究中结合移动窗技术的可行性及所建模型的合理性。利用此模型分析了100 MeV相对论电子束团的长程传输过程,发现传输过程中束团的自生电场和磁场在径向上呈高度对称分布,轴向上则呈轻微前冲分布;同时,束团内部粒子的轴向速度分布也会发生变化。利用此模型分析了100 MeV电子束团的长程传输过程及其内部参数和自生场量的变化。  相似文献   
905.
This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire (LDMF) using a mixed formulation of the transfer matrix method for multibody systems (MSTMM) and Newton-Euler formulation. Taking a ground-borne multiple launch rocket systems (MLRS), the focus is on the launching subsystem comprising the rocket, flexible tube, and tube tail. The launching subsystem is treated as a coupled rigid-flexible multibody system, where the rocket and tube tail are treated as rigid bodies while the flexible tube as a beam with large motion. Firstly, the tube and tube tail can be elegantly handled by the MSTMM, a computationally efficient order-N formulation. Then, the equation of motion of the in-bore rocket with relative kinematics w.r.t. the tube using the Newton-Euler method is derived. Finally, the rocket, tube, and tube tail dynamics are coupled, yielding the equation of motion of the launching subsystem that can be regarded as a building block and further integrated with other subsystems. The deduced dynamics equation of the launching subsystem is not limited to ground-borne MLRS but also fits for tanks, self-propelled artilleries, and other air-borne and naval-borne weapons undergoing large motion. Numerical simulation results of LDMF are given and partially verified by the experiment.  相似文献   
906.
Lightweight hybrid structures of Al MMCs and titanium alloy dissimilar materials have great prospect in the defence industry application. So, it is necessary to join Al MMCs with Ti metal to achieve this structural design. In this work, in-situ TiB2/7050 composite and TA2 were firstly attempted to join by TIG welding-brazing technique. The result was that the intact welding-brazing butt joint was successfully fabricated. The joint presents dual characteristics, being a brazing on TA2 side and a welding on TiB2/7050 side. At brazing joint side, ER4043 filler metal effectively wets on TA2 under TIG heating condition, and a continuous interfacial reaction layer with 1—3μm is formed at welded metal/TA2 interface. The whole interfacial reaction layers are composed of Ti(AlSi)3 intermetallic compounds (IMCs), but their morphologies at the different regions present obvious distinguishes. The microhardness of the reaction layers is as much as 141—190 HV. At welding joints side, the fusion zone appears the equixaed crystal structure, and the grain sizes are much smaller than those of welded metal, which is attributed to the effect of TiB2 particulates from the melted TiB2/7050 on acceleration formation and inhibiting growth for the new crystal nucleus. The tensile test results show that average tensile strength of the optimal welding-brazing joint is able to achieve 138 MPa. The failure of the tensile joint occurs by quasi-cleavage pattern, and the cracks initiate from the IMCs layer at the groove surface of TA2 and propagate into the welded metal.  相似文献   
907.
In this study, 40CrMnSiB steel cylindrical shells were tempered at 350, 500 and 600 ℃ to study the effect of tempering temperature on the dynamic process of expansion and fracture of the metal shell. A mid-explosion recovery experiment for the metal cylinder under internal explosive loading was designed, and the wreckage of the casings at the intermediate phase was obtained. The effects of different tempering temperatures on the macroscopic and microscopic fracture characteristics of 40CrMnSiB steel were studied. The influence of tempering temperatures on the fracture characteristic parameters of the recovered wreckage were measured and analyzed, including the circumferential divide size, the thick-ness and the number of the circumferential divisions. The results show that as the tempering temper-ature was increased from 350 to 600 ℃, at first, the degree of fragmentation and the fracture characteristic parameters of the recovered wreckage changed significantly and then became essentially consistent. Scanning electron microscopy analysis revealed flow-like structure characteristics caused by adiabatic shear on different fracture surfaces. At the detonation initiation end of the casing, fracturing was formed by tearing along the crack, which existed a distance from the initiation end and propagated along the axis direction. In contrast, the fracturing near the middle position consists of a plurality of radial shear fracture units. The amount of alloy carbide that was precipitated during the tempering process increased continuously with tempering temperature, leading to an increasing number of spherical carbide particles scattered around the fracture surface.  相似文献   
908.
In the underwater waveguide, the conventional adaptive subspace detector (ASD), derived by using the generalized likelihood ratio test (GLRT) theory, suffers from a significant degradation in detection per-formance when the samplings of training data are deficient. This paper proposes a dimension-reduced approach to alleviate this problem. The dimension reduction includes two steps: firstly, the full array is divided into several subarrays; secondly, the test data and the training data at each subarray are transformed into the modal domain from the hydrophone domain. Then the modal-domain test data and training data at each subarray are processed to formulate the subarray statistic by using the GLRT theory. The final test statistic of the dimension-reduced ASD (DR-ASD) is obtained by summing all the subarray statistics. After the dimension reduction, the unknown parameters can be estimated more accurately so the DR-ASD achieves a better detection performance than the ASD. In order to achieve the optimal detection performance, the processing gain of the DR-ASD is deduced to choose a proper number of subarrays. Simulation experiments verify the improved detection performance of the DR-ASD compared with the ASD.  相似文献   
909.
The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base (CMDB) propellant. Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process. To improve the accuracy of the simulation results, material parameters and model structure were corrected based on actual conditions, and adaptive grid technology was applied in the local mesh refinement. In addition, the rheological behavior, motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps, rotational rates and temperatures of two rollers. The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet. Compared with the gap, the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging. Meanwhile, under the synergistic effect of contact heat transfer as well as convective heat exchange, heat accumulated near the outlet and diffused along the reflux movement, which led to the countercurrent heat dissipation behavior of CMDB propellant slurry. The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored, which provided theoretical guidance and reference data for the optimization of calendering process conditions. Based on the simulation results, the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.  相似文献   
910.
The core-shell 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-Trinitrotoluene (CL-20/TNT) composite was prepared by spray-drying method in which sensitive high energy explosive (CL-20) was coated with insensitive explosive (TNT). The structure and properties of different formulations of CL-20/TNT composite and CL-20/TNT mixture were characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Laser particle size analyzer, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impact sensitivity test and detonation performance. The results of SEM, TEM, XPS and XRD show that ϵ-CL-20 particles are coated by TNT. When the ratio of CL-20/TNT is 75/25, core-shell structure is well formed, and thickness of the shell is about 20–30 nm. And the analysis of heat and impact show that with the increase of TNT content, the TNT coating on the core-shell composite material can not only catalyze the thermal decomposition of core material (CL-20), but also greatly reduce the impact sensitivity. Compared with the CL-20/TNT mixture (75/25) at the same ratio, the characteristic drop height of core-shell CL-20/TNT composite (75/25) increased by 47.6% and the TNT coating can accelerate the nuclear decomposition in the CL-20/TNT composites. Therefore, the preparation of the core-shell composites can be regarded as a unique means, by which the composites are characterized by controllable decomposition rate, high energy and excellent mechanical sensitivity and could be applied to propellants and other fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号