首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1072篇
  免费   345篇
  国内免费   32篇
  2024年   4篇
  2023年   5篇
  2022年   11篇
  2021年   54篇
  2020年   18篇
  2019年   8篇
  2018年   13篇
  2017年   34篇
  2016年   13篇
  2015年   37篇
  2014年   47篇
  2013年   62篇
  2012年   48篇
  2011年   42篇
  2010年   67篇
  2009年   89篇
  2008年   79篇
  2007年   97篇
  2006年   41篇
  2005年   58篇
  2004年   24篇
  2003年   16篇
  2002年   15篇
  2001年   28篇
  2000年   21篇
  1999年   105篇
  1998年   59篇
  1997年   64篇
  1996年   41篇
  1995年   40篇
  1994年   33篇
  1993年   37篇
  1992年   35篇
  1991年   27篇
  1990年   26篇
  1989年   11篇
  1988年   13篇
  1987年   10篇
  1986年   7篇
  1985年   5篇
  1983年   3篇
  1982年   2篇
排序方式: 共有1449条查询结果,搜索用时 46 毫秒
911.
Linux内核的进程调度原理及改进算法研究   总被引:1,自引:0,他引:1  
随着Linux在嵌入式操作系统领域的广泛应用,对Linux实时性能增强的研究也越来越多。通过对Linux进程调度依据和进程调度过程的分析,提出了一种改进的Linux进程调度算法。该算法改造了进程调度队列数据结构,去掉了进程调度选择时的遍历步骤,更改为直接得到待选最高优先级进程,同时,该算法改统一的时间片重新分配策略为分散的时间片重算策略。通过Linux进程调度算法与改进算法的时间复杂度对比分析,改进算法将Linux调度算法O(n)级的时间复杂度降低为O(1)级时间复杂度,因此能够更好地满足实时操作系统时间可测度以及低延迟等要求。  相似文献   
912.
孙宇航  杨莉 《国防科技》2021,42(2):133-137
装备试验数据作为装备制造产业的重要生产要素,对其管理的能力已成为企业应对创新发展机遇的重要竞争力。本文对装备试验数据进行概要介绍,并对试验数据结构及特点进行分析。同时,按照装备试验数据的保密管理原则,结合装备试验活动各阶段产生的数据类型,以及试验数据量大、种类多、处理速度快等特点,提出试验数据分级管理模型。在此基础上,从试验数据在装备履约、鉴定评估以及实际应用等管理需求出发,分析当前数据管理要求规范化、多源数据管理系统化以及分析工具综合化等数据管理中需要关注的问题,提出装备试验数据信息管理平台建设框架,深入分析管理平台的基础运行环境、数据采集与预处理、分布式存储、数据分析挖掘与应用等信息管理功能模块,旨在为进一步加强装备试验数据管理提供借鉴与参考。  相似文献   
913.
The failure mechanism of a cylindrical shell cut into fragments by circumferential detonation collision was experimentally and numerically investigated. A self-designed detonation wave regulator was used to control the detonation and cut the shell. It was found that the self-designed regulator controlled the fragment shape. The macrostructure and micro-characteristics of fragments revealed that shear fracture was a prior mechanism, the shell fractured not only at the position of detonation collision, but the crack also penetrated the shell at the first contact position of the Chapmen-Jouguet (C-J) wave. The effects of groove number and outer layer thickness on the fracture behavior were tested by simulations. When the thickness of the outer layer was 5–18 mm, it has little effect on fragmentation of the shell, and shells all fractured at similar positions. The increase of the groove number reduced the fracture possibility of the first contact position of the C-J wave. When the groove number reached 7 with a 10 mm outer layer (1/4 model), the fracture only occurred at the position of detonation collision and the fragment width rebounded.  相似文献   
914.
Feature extraction is an important part of signal processing, which is significant for signal detection, classification, and recognition. The nonlinear dynamic analysis method can extract the nonlinear characteristics of signals and is widely used in different fields. Reverse dispersion entropy (RDE) proposed by us recently, as a nonlinear dynamic analysis method, has the advantages of fast computing speed and strong anti-noise ability, which is more suitable for measuring the complexity of signal than traditional permutation entropy (PE) and dispersion entropy (DE). Empirical wavelet transform (EWT), based on the theory of wavelet analysis, can decompose a complex non-stationary signal into a number of empirical wavelet functions (EWFs) with compact support set spectrum, which has better decomposition performance than empirical mode decomposition (EMD) and its improved algorithms. Considering the advantages of RDE and EWT, on the one hand, we introduce EWT into the field of underwater acoustic signal processing and fault diagnosis to improve the signal decomposition accuracy; on the other hand, we use RDE as the features of EWFs to improve the signal separability and stability. Finally, we propose a novel signal feature extraction technology based on EWT and RDE in this paper. Experimental results show that the proposed feature extraction technology can effectively extract the complexity features of actual signals. Moreover, it also has higher distinguishing ability for different types of signals than five latest feature extraction technologies.  相似文献   
915.
In order to study the influences of confining pressure and strain rate on the mechanical properties of the Nitrate Ester Plasticized Polyether (NEPE) propellant, uniaxial tensile tests were conducted using the self-made confining pressure system and material testing machine. The stress-strain responses of the NEPE propellant under different confining pressure conditions and strain rates were obtained and analyzed. The results show that confining pressure and strain rate have a remarkably influence on the mechanical responses of the NEPE propellant. As confining pressure increases (from 0 to 5.4 MPa), the maximum tensile stress and ultimate strain increase gradually. With the coupled effects of confining pressure and strain rate, the value of the maximum tensile stress and ultimate strain at 5.4 MPa and 0.0667 s−1 is 2.03 times and 2.19 times of their values under 0 MPa and 0.00333 s−1, respectively. Afterwards, the influence mechanism of confining pressure on the NEPE propellant was analyzed. Finally, based on the viscoelastic theory and continuous damage theory, a nonlinear constitutive model considering confining pressure and strain rate was developed. The damage was considered to be rate-dependent and pressure-dependent. The constitutive model was validated by comparing experimental data with predictions of the constitutive model. The whole maximum stress errors of the model predictions are lower than 4% and the corresponding strain errors are lower than 7%. The results show that confining pressure can suppress the damage initiation and evolution of the NEPE propellant and the nonlinear constitutive model can describe the mechanical responses of the NEPE propellant under various confining pressure conditions and strain rates. This research can lay a theoretical foundation for analyzing the structural integrity of propellant grain accurately under working pressure loading.  相似文献   
916.
Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capa-bility for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of task-decomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV's control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV's flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments.  相似文献   
917.
Multi-pass TIG welding was conducted on plates (15×300×180 mm3) of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing industries. Porosity formation and solidification cracking are the most common defects when TIG welding Al-5083 alloy, which is sensitive to the welding heat input. In the experiment, the heat input was varied from 0.89 kJ/mm to 5 kJ/mm designed by the combination of welding torch travel speed and welding current. Tensile, micro-Vicker hardness and Charpy impact tests were executed to witness the impetus response of heat input on the mechanical properties of the joints. Radiographic inspection was performed to assess the joint's quality and welding defects. The results show that all the specimens displayed inferior mechanical properties as compared to the base alloy. It was established that porosity was progressively abridged by the increase of heat input. The results also clinched that the use of me-dium heat input (1-2 kJ/mm) offered the best mechanical properties by eradicating welding defects, in which only about 18.26% of strength was lost. The yield strength of all the welded specimens remained unaffected indicated no influence of heat input. Partially melted zone (PMZ) width also affected by heat input, which became widened with the increase of heat input. The grain size of PMZ was found to be coarser than the respective grain size in the fusion zone. Charpy impact testing revealed that the absorbed energy by low heat input specimen (welded at high speed) was greater than that of high heat input (welded at low speed) because of low porosity and the formation of equiaxed grains which induce better impact toughness. Cryogenic (-196 C) impact testing was also performed and the results corroborate that impact properties under the cryogenic environment revealed no appreciable change after welding at designated heat input. Finally, Macro and micro fractured surfaces of tensile and impact specimens were analyzed using Stereo and Scanning Electron Microscopy (SEM), which have supported the experimental findings.  相似文献   
918.
A systematic investigation on the mechanism of dynamic liquid dispersing process via theoretical and experimental approach is presented. The experiments include weak and strong constrained scenarios using the high-speed camera technique and the flash X-ray radiography technique. Based on dynamic analysis, one-dimensional characteristics analysis and some numerical simulations on the propagating processes of blast waves before the container shell rupturing, further and detailed analyses of the experimental results are presented. The effects of the liquid viscosity on the dynamic dispersing flow are also analyzed, and the spall fracture mechanism is explored. Thus, the dominating forces determining the dispersing liquid flow are revealed, that is, the stretching and shearing action due to the interaction of two reflecting rarefaction waves in opposite propagating directions. The influence of container shell strength on the dispersing liquid flow is also investigated, and the characters of cavitation layered in liquid before shell rupturing are uncovered. Results revealed that different shell material results in different cavitating layers. Then the different cavitating layers drive the different dynamic liquid dispersing process coming into being. The metastable liquid states caused by pressure drop and cavi-tation generation are discussed.  相似文献   
919.
This study investigates and quantifies some possible sources affecting the position of impact points of small caliber spin-stabilized projectiles (such as 12.7 mm bullets). A comparative experiment utilizing the control variable method was designed to figure out the influence of tiny eccentric centroids on the projectiles. The study critically analyzes data obtained from characteristic parameter measurements and precision trials. It also combines Sobol's algorithm with an artificial intelligence algorithm—Adaptive Neuro-Fuzzy Inference Systems (ANFIS)—in order to conduct global sensitivity analysis and determine which parameters were most influential. The results indicate that the impact points of projectiles with an entry angle of 0° deflected to the left to that of projectiles with an entry angle of 90°. The difference of the mean coordinates of impact points was about 12.61 cm at a target range of 200 m. Variance analysis indicated that the entry angle — i.e. the initial position of mass eccentricity — had a notable influence. After global sensitivity analysis, the significance of the effect of mass eccentricity was confirmed again and the most influential factors were determined to be the axial moment and transverse moment of inertia (Izz Iyy), the mass of a projectile (m), the distance between nose and center of mass along the symmetry axis for a projectile (Lm), and the eccentric distance of the centroid (Lr). The results imply that the control scheme by means of modifying mass center (moving mass or mass eccentricity) is promising for designing small-caliber spin-stabilized projectiles.  相似文献   
920.
Insensitive energetic materials are promising in the defense weapons field. However, energetic materials still suffer from great challenges and the concern about their safety limits their utilization. In this work, insensitive energetic explosive 3,3′-diamino-4,4′-azoxyfurazan/hexahydro-1,3,5-trinitro-1,3,5-triazine (DAAF/RDX) microspheres were fabricated by self-assembly method. Rod-like DAAF/RDX was prepared by mechanical ball milling for comparison. DAAF/RDX composites with different mass ratios (90:10, 80:20, and 70:30) were obtained. The morphologies and structures of as-obtained DAAF/RDX composites were characterized by scanning electron microscopy (SEM), powder x-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FT-IR). The results showed that DAAF/RDX microspheres exhibited regular shaped microspheres with sizes from 0.5 to 1.2 μm. There was no crystal transition during the modification process. The thermal properties of as-obtained materials were then evaluated by differential scanning calorimetry (DSC) and materials studio software. DAAF/RDX microspheres showed an advanced decomposition peak temperature compared with rod-like DAAF/RDX. The binding energy and peak temperature values at zero βi (TP0) of DAAF/RDX (90:10) increased by 36.77 kJ/mol, 1.6 °C, and 58.11 kJ/mol, 12.3 °C compared to DAAF/RDX (80:20) and DAAF/RDX (70:30), indicating the better thermal stability of DAAF/RDX (90:10). The characteristic drop height (H50) of DAAF/RDX (higher than 100 cm) composites was higher than that of raw RDX (25 cm), suggesting significant improvements in mechanical safety. The preparation of DAAF/RDX microspheres is promising for the desensitization of RDX and useful for the formation of other materials and future wide applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号