首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   42篇
  252篇
  2021年   2篇
  2020年   1篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   13篇
  2015年   16篇
  2014年   10篇
  2013年   73篇
  2012年   9篇
  2011年   7篇
  2010年   5篇
  2009年   7篇
  2008年   10篇
  2007年   11篇
  2006年   7篇
  2005年   11篇
  2004年   7篇
  2003年   11篇
  2002年   11篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1996年   3篇
  1993年   2篇
排序方式: 共有252条查询结果,搜索用时 8 毫秒
151.
Most papers in the scheduling field assume that a job can be processed by only one machine at a time. Namely, they use a one‐job‐on‐one‐machine model. In many industry settings, this may not be an adequate model. Motivated by human resource planning, diagnosable microprocessor systems, berth allocation, and manufacturing systems that may require several resources simultaneously to process a job, we study the problem with a one‐job‐on‐multiple‐machine model. In our model, there are several alternatives that can be used to process a job. In each alternative, several machines need to process simultaneously the job assigned. Our purpose is to select an alternative for each job and then to schedule jobs to minimize the completion time of all jobs. In this paper, we provide a pseudopolynomial algorithm to solve optimally the two‐machine problem, and a combination of a fully polynomial scheme and a heuristic to solve the three‐machine problem. We then extend the results to a general m‐machine problem. Our algorithms also provide an effective lower bounding scheme which lays the foundation for solving optimally the general m‐machine problem. Furthermore, our algorithms can also be applied to solve a special case of the three‐machine problem in pseudopolynomial time. Both pseudopolynomial algorithms (for two‐machine and three‐machine problems) are much more efficient than those in the literature. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 57–74, 1999  相似文献   
152.
This paper presents a branch and bound algorithm for computing optimal replacement policies in a discrete‐time, infinite‐horizon, dynamic programming model of a binary coherent system with n statistically independent components, and then specializes the algorithm to consecutive k‐out‐of‐n systems. The objective is to minimize the long‐run expected average undiscounted cost per period. (Costs arise when the system fails and when failed components are replaced.) An earlier paper established the optimality of following a critical component policy (CCP), i.e., a policy specified by a critical component set and the rule: Replace a component if and only if it is failed and in the critical component set. Computing an optimal CCP is a optimization problem with n binary variables and a nonlinear objective function. Our branch and bound algorithm for solving this problem has memory storage requirement O(n) for consecutive k‐out‐of‐n systems. Extensive computational experiments on such systems involving over 350,000 test problems with n ranging from 10 to 150 find this algorithm to be effective when n ≤ 40 or k is near n. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 288–302, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10017  相似文献   
153.
This paper presents a deterministic approach to schedule patients in an ambulatory surgical center (ASC) such that the number of postanesthesia care unit nurses at the center is minimized. We formulate the patient scheduling problem as new variants of the no‐wait, two‐stage process shop scheduling problem and present computational complexity results for the new scheduling models. Also, we develop a tabu search‐based heuristic algorithm to solve the patient scheduling problem. Our algorithm is shown to be very effective in finding near optimal schedules on a set of real data from a university hospital's ASC. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
154.
This article is concerned with a general multi‐class multi‐server priority queueing system with customer priority upgrades. The queueing system has various applications in inventory control, call centers operations, and health care management. Through a novel design of Lyapunov functions, and using matrix‐analytic methods, sufficient conditions for the queueing system to be stable or instable are obtained. Bounds on the queue length process are obtained by a sample path method, with the help of an auxiliary queueing system. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
155.
Despite its ability to result in more effective network plans, the telecommunication network planning problem with signal‐to‐interference ratio constraints gained less attention than the power‐based one because of its complexity. In this article, we provide an exact solution method for this class of problems that combines combinatorial Benders decomposition, classical Benders decomposition, and valid cuts in a nested way. Combinatorial Benders decomposition is first applied, leading to a binary master problem and a mixed integer subproblem. The subproblem is then decomposed using classical Benders decomposition. The algorithm is enhanced using valid cuts that are generated at the classical Benders subproblem and are added to the combinatorial Benders master problem. The valid cuts proved efficient in reducing the number of times the combinatorial Benders master problem is solved and in reducing the overall computational time. More than 120 instances of the W‐CDMA network planning problem ranging from 20 demand points and 10 base stations to 140 demand points and 30 base stations are solved to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
156.
Global sourcing has made quality management a more challenging task, and supplier certification has emerged as a solution to overcome suppliers' informational advantage about their product quality. This article analyzes the impact of certification standards on the supplier's investment in quality, when a buyer outsources the production process. Based on our results, deterministic certification may lead to under‐investment in quality improvement technology for efficient suppliers, thereby leading to potential supply chain inefficiency. The introduction of noisy certification may alleviate this under‐investment problem, when the cost of information asymmetry is high. While allowing noisy certification always empowers the buyer to offer a menu to screen among heterogeneous suppliers, the buyer may optimally choose only a limited number of certification standards. Our analysis provides a clear‐cut prediction of the types of certifiers the buyer should use for heterogeneous suppliers, and we identify the conditions under which the supplier benefits from noisy certification. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
157.
We consider the problem of optimally maintaining a stochastically degrading, single‐unit system using heterogeneous spares of varying quality. The system's failures are unannounced; therefore, it is inspected periodically to determine its status (functioning or failed). The system continues in operation until it is either preventively or correctively maintained. The available maintenance options include perfect repair, which restores the system to an as‐good‐as‐new condition, and replacement with a randomly selected unit from the supply of heterogeneous spares. The objective is to minimize the total expected discounted maintenance costs over an infinite time horizon. We formulate the problem using a mixed observability Markov decision process (MOMDP) model in which the system's age is observable but its quality must be inferred. We show, under suitable conditions, the monotonicity of the optimal value function in the belief about the system quality and establish conditions under which finite preventive maintenance thresholds exist. A detailed computational study reveals that the optimal policy encourages exploration when the system's quality is uncertain; the policy is more exploitive when the quality is highly certain. The study also demonstrates that substantial cost savings are achieved by utilizing our MOMDP‐based method as compared to more naïve methods of accounting for heterogeneous spares.  相似文献   
158.
The costs of many economic activities such as production, purchasing, distribution, and inventory exhibit economies of scale under which the average unit cost decreases as the total volume of the activity increases. In this paper, we consider an economic lot‐sizing problem with general economies of scale cost functions. Our model is applicable to both nonperishable and perishable products. For perishable products, the deterioration rate and inventory carrying cost in each period depend on the age of the inventory. Realizing that the problem is NP‐hard, we analyze the effectiveness of easily implementable policies. We show that the cost of the best Consecutive‐Cover‐Ordering (CCO) policy, which can be found in polynomial time, is guaranteed to be no more than (4 + 5)/7 ≈ 1.52 times the optimal cost. In addition, if the ordering cost function does not change from period to period, the cost of the best CCO policy is no more than 1.5 times the optimal cost. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
159.
This paper tackles the general single machine scheduling problem, where jobs have different release and due dates and the objective is to minimize the weighted number of late jobs. The notion of master sequence is first introduced, i.e., a sequence that contains at least an optimal sequence of jobs on time. This master sequence is used to derive an original mixed‐integer linear programming formulation. By relaxing some constraints, a Lagrangean relaxation algorithm is designed which gives both lower and upper bounds. The special case where jobs have equal weights is analyzed. Computational results are presented and, although the duality gap becomes larger with the number of jobs, it is possible to solve problems of more than 100 jobs. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 50: 2003  相似文献   
160.
Uncertainties abound within a supply chain and have big impacts on its performance. We propose an integrated model for a three‐tiered supply chain network with one supplier, one or more facilities and retailers. This model takes into consideration the unreliable aspects of a supply chain. The properties of the optimal solution to the model are analyzed to reveal the impacts of supply uncertainty on supply chain design decisions. We also propose a general solution algorithm for this model. Computational experience is presented and discussed. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号