首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   563篇
  免费   18篇
  2021年   11篇
  2019年   10篇
  2018年   7篇
  2017年   16篇
  2016年   10篇
  2015年   16篇
  2014年   13篇
  2013年   136篇
  2011年   7篇
  2009年   4篇
  2008年   8篇
  2007年   6篇
  2006年   8篇
  2005年   11篇
  2004年   4篇
  2003年   4篇
  2002年   7篇
  2001年   6篇
  2000年   6篇
  1999年   7篇
  1998年   10篇
  1997年   10篇
  1996年   8篇
  1995年   10篇
  1994年   12篇
  1993年   11篇
  1992年   12篇
  1991年   12篇
  1990年   4篇
  1989年   10篇
  1988年   18篇
  1987年   10篇
  1986年   16篇
  1985年   11篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   11篇
  1980年   6篇
  1979年   12篇
  1978年   7篇
  1977年   7篇
  1975年   12篇
  1974年   7篇
  1973年   6篇
  1972年   7篇
  1971年   5篇
  1970年   6篇
  1969年   6篇
  1966年   4篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
391.
Tactical learning is critical to battlefield success, especially in a counterinsurgency. This article tests the existing model of military adaption against a ‘most-likely’ case: the British Army’s counterinsurgency in the Southern Cameroons (1960–61). Despite meeting all preconditions thought to enable adaptation – decentralization, leadership turnover, supportive leadership, poor organizational memory, feedback loops, and a clear threat – the British still failed to adapt. Archival evidence suggests politicians subverted bottom-up adaptation, because winning came at too high a price in terms of Britain’s broader strategic imperatives. Our finding identifies an important gap in the extant adaptation literature: it ignores politics.  相似文献   
392.
393.
Decades ago, simulation was famously characterized as a “method of last resort,” to which analysts should turn only “when all else fails.” In those intervening decades, the technologies supporting simulation—computing hardware, simulation‐modeling paradigms, simulation software, design‐and‐analysis methods—have all advanced dramatically. We offer an updated view that simulation is now a very appealing option for modeling and analysis. When applied properly, simulation can provide fully as much insight, with as much precision as desired, as can exact analytical methods that are based on more restrictive assumptions. The fundamental advantage of simulation is that it can tolerate far less restrictive modeling assumptions, leading to an underlying model that is more reflective of reality and thus more valid, leading to better decisions. Published 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 293–303, 2015  相似文献   
394.
The literature on the product mix decision (or master production scheduling) under the Theory of Constraints (TOC), which was developed in the past two decades, has addressed this problem as a static operational decision. Consequently, the developed solution techniques do not consider the system's dynamism and the associated challenges arising from the complexity of operations during the implementation of master production schedules. This paper aims to address this gap by developing a new heuristic approach for master production scheduling under the TOC philosophy that considers the main operational factors that influence actual throughput after implementation of the detailed schedule. We examine the validity of the proposed heuristic by comparison to Integer Linear Programming and two heuristics in a wide range of scenarios using simulation modelling. Statistical analyses indicate that the new algorithm leads to significantly enhanced performance during implementation for problems with setup times. The findings show that the bottleneck identification approach in current methods in the TOC literature is not effective and accurate for complex operations in real‐world job shop systems. This study contributes to the literature on master production scheduling and product mix decisions by enhancing the likelihood of achieving anticipated throughput during the implementation of the detailed schedule. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 357–369, 2015  相似文献   
395.
This article is concerned with the determination of pricing strategies for a firm that in each period of a finite horizon receives replenishment quantities of a single product which it sells in two markets, for example, a long‐distance market and an on‐site market. The key difference between the two markets is that the long‐distance market provides for a one period delay in demand fulfillment. In contrast, on‐site orders must be filled immediately as the customer is at the physical on‐site location. We model the demands in consecutive periods as independent random variables and their distributions depend on the item's price in accordance with two general stochastic demand functions: additive or multiplicative. The firm uses a single pool of inventory to fulfill demands from both markets. We investigate properties of the structure of the dynamic pricing strategy that maximizes the total expected discounted profit over the finite time horizon, under fixed or controlled replenishment conditions. Further, we provide conditions under which one market may be the preferred outlet to sale over the other. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 531–549, 2015  相似文献   
396.
We consider a parallel‐machine scheduling problem with jobs that require setups. The duration of a setup does not depend only on the job just completed but on a number of preceding jobs. These setup times are referred to as history‐dependent. Such a scheduling problem is often encountered in the food processing industry as well as in other process industries. In our model, we consider two types of setup times—a regular setup time and a major setup time that becomes necessary after several “hard‐to‐clean” jobs have been processed on the same machine. We consider multiple objectives, including facility utilization, flexibility, number of major setups, and tardiness. We solve several special cases assuming predetermined job sequences and propose strongly polynomial time algorithms to determine the optimal timing of the major setups for given job sequences. We also extend our analysis to develop pseudopolynomial time algorithms for cases with additional objectives, including the total weighted completion time, the total weighted tardiness, and the weighted number of tardy jobs. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
397.
Particulate composites are one of the widely used materials in producing numerous state-of-the-art components in biomedical, automobile, aerospace including defence technology. Variety of modelling techniques have been adopted in the past to model mechanical behaviour of particulate composites. Due to their favourable properties, particle-based methods provide a convenient platform to model failure or fracture of these composites. Smooth particle hydrodynamics (SPH) is one of such methods which demonstrate excellent potential for modelling failure or fracture of particulate composites in a Lagrangian setting. One of the major challenges in using SPH method for modelling composite materials depends on accurate and efficient way to treat interface and boundary conditions. In this paper, a master-slave method based multi-freedom constraints is proposed to impose essential boundary conditions and interfacial displacement constraints in modelling mechanical behaviour of composite materials using SPH method. The proposed methodology enforces the above constraints more accurately and requires only smaller condition number for system stiffness matrix than the procedures based on typical penalty function approach. A minimum cut-off value-based error criteria is employed to improve the compu-tational efficiency of the proposed methodology. In addition, the proposed method is further enhanced by adopting a modified numerical interpolation scheme along the boundary to increase the accuracy and computational efficiency. The numerical examples demonstrate that the proposed master-slave approach yields better accuracy in enforcing displacement constraints and requires approximately the same computational time as that of penalty method.  相似文献   
398.
This article deals with evaluating the frequency response of functionally graded carbon nanotube rein-forced magneto-electro-elastic (FG-CNTMEE) plates subjected to open and closed electro-magnetic cir-cuit conditions. In this regard finite element formulation has been derived. The plate kinematics adjudged via higher order shear deformation theory (HSDT) is considered for evaluation. The equations of motion are obtained with the help of Hamilton's principle and solved using condensation technique. It is found that the convergence and accuracy of the present FE formulation is very good to address the vibration problem of FG-CNTMEE plate. For the first time, frequency response analysis of FG-CNTMEE plates considering the effect of various circuit conditions associated with parameters such as CNT dis-tributions, volume fraction, skew angle, aspect ratio, length-to-thickness ratio and coupling fields has been carried out. The results of this article can serve as benchmark for future development and analysis of smart structures.  相似文献   
399.
Recent researches focused on developing robust blast load mitigation systems due to the threats of terrorist attacks. One of the main embraced strategies is the structural systems that use mitigation techniques. They are developed from a combination of structural elements and described herein as conventional systems. Among the promising techniques is that redirect the waves propagation through hollow tubes. The blast wave propagation through tubes provides an efficient system since it combines many blast wave phenomena, such as reflection, diffraction, and interaction. In this research, a novel blast load mitigation system, employed as a protection fence, is developed using a technique similar to the technique of the bent tube in manipulating the shock-wave. The relative performance of the novel system to the conventional system is evaluated based on mitigation percent criteria. Performances of both systems are calculated through numerical simulation. The proposed novel system proved to satisfy high performance in mitigating the generated blast waves from charges weight up to 500 kg TNT at relatively small standoff distances (5 m and 8 m). It mitigates at least 94% of the blast waves, which means that only 6% of that blast impulse is considered as the applied load on the targeted structure.  相似文献   
400.
This article considers two related questions of tactics in the context of the salvo model for naval missile combat. For a given set of targets, how many missiles should be fired to produce an effective attack? For a given available salvo size, how many enemy targets should be fired at? In the deterministic version of the model I derive a simple optimality relationship between the number of missiles to fire and the number of targets to engage. In the stochastic model I employ the expected loss inflicted and the probability of enemy elimination as the main performance measures and use these to derive salvo sizes that are in some sense “optimal.” I find that the offensive firepower needed for an effective attack depends not only on a target's total strength but also on the relative balance between its active defensive power and passive staying power. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号