首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1062篇
  免费   22篇
  2021年   12篇
  2019年   27篇
  2018年   14篇
  2017年   32篇
  2016年   23篇
  2015年   27篇
  2014年   29篇
  2013年   227篇
  2010年   10篇
  2009年   12篇
  2008年   10篇
  2007年   11篇
  2006年   11篇
  2005年   13篇
  2004年   12篇
  2002年   15篇
  2001年   12篇
  2000年   10篇
  1999年   12篇
  1998年   22篇
  1997年   18篇
  1996年   17篇
  1995年   13篇
  1994年   25篇
  1993年   22篇
  1992年   17篇
  1991年   24篇
  1990年   12篇
  1989年   20篇
  1988年   30篇
  1987年   22篇
  1986年   35篇
  1985年   22篇
  1984年   16篇
  1983年   12篇
  1982年   13篇
  1981年   16篇
  1980年   12篇
  1979年   17篇
  1978年   17篇
  1977年   9篇
  1976年   9篇
  1975年   15篇
  1974年   14篇
  1973年   12篇
  1972年   15篇
  1971年   9篇
  1970年   13篇
  1969年   12篇
  1967年   8篇
排序方式: 共有1084条查询结果,搜索用时 15 毫秒
851.
We consider a two‐level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order‐up‐to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot‐sizing problem, we cannot assume that the initial inventory will be zero without loss of generality. We propose a strong mixed integer program formulation for the problem with zero and nonzero initial inventories at the warehouse. The strong formulation for the zero initial inventory case has only T binary variables and represents the convex hull of the feasible region of the problem when there is only one retailer. Computational results with a state‐of‐the art solver reveal that our formulations are very effective in solving large‐size instances to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
852.
A natural extension of the bucket brigade model of manufacturing is capable of chaotic behavior in which the product intercompletion times are, in effect, random, even though the model is completely deterministic. This is, we believe, the first proven instance of chaos in discrete manufacturing. Chaotic behavior represents a new challenge to the traditional tools of engineering management to reduce variability in production lines. Fortunately, if configured correctly, a bucket brigade assembly line can avoid such pathologies. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
853.
We consider the two‐machine open shop scheduling problem in which the jobs are brought to the system by a single transporter and moved between the processing machines by the same transporter. The purpose is to split the jobs into batches and to find the sequence of moves of the transporter so that the time by which the completed jobs are collected together on board the transporter is minimal. We present a ‐approximation algorithm. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
854.
We present a computationally efficient procedure to determine control policies for an infinite horizon Markov Decision process with restricted observations. The optimal policy for the system with restricted observations is a function of the observation process and not the unobservable states of the system. Thus, the policy is stationary with respect to the partitioned state space. The algorithm we propose addresses the undiscounted average cost case. The algorithm combines a local search with a modified version of Howard's (Dynamic programming and Markov processes, MIT Press, Cambridge, MA, 1960) policy iteration method. We demonstrate empirically that the algorithm finds the optimal deterministic policy for over 96% of the problem instances generated. For large scale problem instances, we demonstrate that the average cost associated with the local optimal policy is lower than the average cost associated with an integer rounded policy produced by the algorithm of Serin and Kulkarni Math Methods Oper Res 61 (2005) 311–328. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
855.
The signature of a system with independent and identically distributed (i.i.d.) component lifetimes is a vector whose ith element is the probability that the ith component failure is fatal to the system. System signatures have been found to be quite useful tools in the study and comparison of engineered systems. In this article, the theory of system signatures is extended to versions of signatures applicable in dynamic reliability settings. It is shown that, when a working used system is inspected at time t and it is noted that precisely k failures have occurred, the vector s [0,1]nk whose jth element is the probability that the (k + j)th component failure is fatal to the system, for j = 1,2,2026;,nk, is a distribution‐free measure of the design of the residual system. Next, known representation and preservation theorems for system signatures are generalized to dynamic versions. Two additional applications of dynamic signatures are studied in detail. The well‐known “new better than used” (NBU) property of aging systems is extended to a uniform (UNBU) version, which compares systems when new and when used, conditional on the known number of failures. Sufficient conditions are given for a system to have the UNBU property. The application of dynamic signatures to the engineering practice of “burn‐in” is also treated. Specifically, we consider the comparison of new systems with working used systems burned‐in to a given ordered component failure time. In a reliability economics framework, we illustrate how one might compare a new system to one successfully burned‐in to the kth component failure, and we identify circumstances in which burn‐in is inferior (or is superior) to the fielding of a new system. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
856.
In this article, we study the design and control of manufacturing cells with a mix of manual and automated equipment, operating under a CONWIP pull protocol, and staffed by a single agile (cross‐trained) worker. For a three‐station line with one automated station, we fully characterize the structure of the optimal control policy for the worker and show that it is a static priority policy. Using analytical models and extensive simulation experiments, we also evaluate the effectiveness of practical heuristic control policies and provide managerial insights on automation configuration design of the line. This characterization of the worker control policy enables us to develop managerial insights into the design issues of how best to locate and concentrate automation in the line. Finally, we show that, in addition to ease of control and greater design flexibility, the CONWIP protocol also offers higher efficiency and robustness than does the push protocol. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
857.
858.
This article considers the determination of the optimal base-stock inventory policy for the newsboy inventory model when there is uncertainty about either or both of its basic cost inputs: either Cu, the marginal cost of an undersupply mistake, or Co, the marginal cost of an oversupply mistake. Such uncertainties often arise in implementing the newsboy model, especially with respect to Cu, whose value depends mostly on the often-imponderable economic consequences of a lost sale or backorder. Given this uncertainty, we use decision theory to propose and analyze two measures of policy “goodness” and two base-stock selection criteria, which in combination provide four alternative “optimal” base-stock policies. Formulas and/or conditions defining each alternative policy are provided. Our empirical study indicates that the recommended policy can be quite sensitive to the measure/criterion chosen, and that the consequences of the wrong choice can be quite considerable.  相似文献   
859.
This paper considers a problem of warranty reserving, namely, the current practice of setting aside part of a product revenue to meet future claims arising from the warranty. We define a Compound Poisson stochastic model for warranty claims and reserve and obtain, using a sample paths technique, the long-run probability distribution of a warranty reserves, managed under alternative warranties and reserve policies.  相似文献   
860.
In this article we consider a single-server, bulk-service queueing system in which the waiting room is of finite capacity. Arrival process is Poisson and all the arrivals taking place when the waiting room is full are lost. The service times are generally distributed independent random variables and the distribution is depending on the batch size being served. Using renewal theory, we derive the time-dependent solution for the system-size probabilities at arbitrary time points. Also we give expressions for the distribution of virtual waiting time in the queue at any time t.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号